Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters

被引:125
作者
Dral, Pavlo O. [1 ]
Wu, Xin [1 ]
Spoerkel, Lasse [1 ]
Koslowski, Axel [1 ]
Weber, Wolfgang [1 ,2 ]
Steiger, Rainer [1 ,3 ]
Scholten, Mirjam [1 ,4 ]
Thiel, Walter [1 ]
机构
[1] Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470 Mulheim, Germany
[2] BASF, Rue Marie Bourgogne 58, B-1000 Brussels, Belgium
[3] Arbentalstr 204, CH-8045 Zurich, Switzerland
[4] Leberberg 11, D-65193 Wiesbaden, Germany
基金
欧洲研究理事会;
关键词
DENSITY-FUNCTIONAL-THEORY; PHOTOINDUCED NONADIABATIC DYNAMICS; ANALYTICAL 1ST DERIVATIVES; MOLECULAR-ORBITAL METHODS; HARTREE-FOCK MODEL; INTERMOLECULAR INTERACTIONS; DECAY DYNAMICS; GROUND-STATES; DISPERSION CORRECTIONS; EFFECTIVE POTENTIALS;
D O I
10.1021/acs.jctc.5b01046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Semiempirical orthogonalization-corrected methods (OM1, OM2, and OM3) go beyond the standard MNDO model by explicitly including additional interactions into the Fock matrix in an approximate manner (Pauli repulsion, penetration effects, and core-valence interactions), which yields systematic improvements both for ground-state and excited-state properties. In this Article, we describe the underlying theoretical formalism of the OMx methods and their implementation in full detail, and we report all relevant OMx parameters for hydrogen, carbon, nitrogen, oxygen, and fluorine. For a standard set of mostly organic molecules commonly used in semiempirical method development, the OMx results are found to be superior to those from standard MNDO-type methods. Parametrized Grimme-type dispersion corrections can added to OM2 and OM3 energies to provide a realistic treatment of noncovalent interaction energies, as demonstrated for the complexes in the S22 and S66X8 test sets.
引用
收藏
页码:1082 / 1096
页数:15
相关论文
共 108 条
[61]   Generic implementation of semi-analytical CI gradients for NDDO-type methods [J].
Patchkovskii, S ;
Koslowski, A ;
Thiel, W .
THEORETICAL CHEMISTRY ACCOUNTS, 2005, 114 (1-3) :84-89
[62]  
Patchkovskii S, 1996, J COMPUT CHEM, V17, P1318, DOI 10.1002/(SICI)1096-987X(199608)17:11<1318::AID-JCC4>3.0.CO
[63]  
2-P
[64]  
Patchkovskii S, 1996, THEOR CHIM ACTA, V93, P87, DOI 10.1007/s002140050139
[65]   APPROXIMATE SELF-CONSISTENT MOLECULAR ORBITAL THEORY .I. INVARIANT PROCEDURES [J].
POPLE, JA ;
SANTRY, DP ;
SEGAL, GA .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (10) :S129-+
[66]   APPROXIMATE SELF-CONSISTENT MOLECULAR ORBITAL THEORY .2. CALCULATIONS WITH COMPLETE NEGLECT OF DIFFERENTIAL OVERLAP [J].
POPLE, JA ;
SEGAL, GA .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (10) :S136-+
[67]   PDDG/PM3 and PDDG/MNDO: Improved semiempirical methods [J].
Repasky, MP ;
Chandrasekhar, J ;
Jorgensen, WL .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2002, 23 (16) :1601-1622
[68]  
Rezac J., 2012, J CHEM THEORY COMPUT, V8, P141
[69]  
Rezac J., 2009, J CHEM THEORY COMPUT, V5, P1749
[70]   S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures [J].
Rezac, Jan ;
Riley, Kevin E. ;
Hobza, Pavel .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (08) :2427-2438