Tight finite-key security for twin-field quantum key distribution

被引:49
作者
Curras-Lorenzo, Guillermo [1 ]
Navarrete, Alvaro [2 ]
Azuma, Koji [3 ,4 ]
Kato, Go [4 ,5 ]
Curty, Marcos [2 ]
Razavi, Mohsen [1 ]
机构
[1] Univ Leeds, Sch Elect & Elect Engn, Leeds, W Yorkshire, England
[2] Univ Vigo, Dept Signal Theory & Commun, El Telecomun, Vigo, Spain
[3] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa, Japan
[4] NTT Corp, NTT Res Ctr Theoret Quantum Phys, Atsugi, Kanagawa, Japan
[5] NTT Corp, NTT Commun Sci Labs, Atsugi, Kanagawa, Japan
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/s41534-020-00345-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD) offers a reliable solution to communication problems that require long-term data security. For its widespread use, however, the rate and reach of QKD systems must be improved. Twin-field (TF) QKD is a step forward toward this direction, with early demonstrations suggesting it can beat the current rate-versus-distance records. A recently introduced variant of TF-QKD is particularly suited for experimental implementation, and has been shown to offer a higher key rate than other variants in the asymptotic regime, where users exchange an infinite number of signals. Here, we extend the security of this protocol to the finite-key regime, showing that it can overcome the fundamental bounds on point-to-point QKD with similar to 10(10) transmitted signals. In many practical regimes of interest, our analysis offers higher key rates than those of alternative variants. Moreover, some of the techniques we develop are applicable to the finite-key analysis of other QKD protocols.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Measurement-device-independent quantum key distribution with quantum memories [J].
Abruzzo, Silvestre ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2014, 89 (01)
[2]  
Azuma K., 1967, Tohoku Math. J, V19, P357, DOI [10.2748/tmj/1178243286, DOI 10.2748/TMJ/1178243286]
[3]   All-photonic intercity quantum key distribution [J].
Azuma, Koji ;
Tamaki, Kiyoshi ;
Munro, William J. .
NATURE COMMUNICATIONS, 2015, 6
[4]   Wavelength assignment in quantum access networks with hybrid wireless-fiber links [J].
Bahrani, Sima ;
Elmabrok, Osama ;
Lorenzo, Guillermo Curras ;
Razavi, Mohsen .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (03) :B99-B108
[5]  
Ben-Or M, 2005, LECT NOTES COMPUT SC, V3378, P386
[6]   Experimental demonstration of memory-enhanced quantum communication [J].
Bhaskar, M. K. ;
Riedinger, R. ;
Machielse, B. ;
Levonian, D. S. ;
Nguyen, C. T. ;
Knall, E. N. ;
Park, H. ;
Englund, D. ;
Loncar, M. ;
Sukachev, D. D. ;
Lukin, M. D. .
NATURE, 2020, 580 (7801) :60-+
[7]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[8]   Twin-Field Quantum Key Distribution without Phase Postselection [J].
Cui, Chaohan ;
Yin, Zhen-Qiang ;
Wang, Rong ;
Chen, Wei ;
Wang, Shuang ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[9]   Simple security proof of twin-field type quantum key distribution protocol [J].
Curty, Marcos ;
Azuma, Koji ;
Lo, Hoi-Kwong .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[10]   Finite-key analysis for measurement-device-independent quantum key distribution [J].
Curty, Marcos ;
Xu, Feihu ;
Cui, Wei ;
Lim, Charles Ci Wen ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2014, 5