Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series

被引:67
作者
Bendini, Hugo do Nascimento [1 ]
Fonseca, Leila Maria Garcia [1 ]
Schwieder, Marcel [2 ]
Korting, Thales Sehn [1 ]
Rufin, Philippe [2 ,3 ]
Sanches, Ieda Del Arco [1 ]
Leitao, Pedro J. [2 ,4 ]
Hostert, Patrick [2 ,3 ]
机构
[1] Natl Inst Space Res INPE, Sao Jose Dos Campos, SP, Brazil
[2] Humboldt Univ, Geog Dept, Unter Linden 6, D-10099 Berlin, Germany
[3] Humboldt Univ, Integrat Res Inst Transformat Human Environm Syst, Unter Linden 6, D-10099 Berlin, Germany
[4] Tech Univ Braunschwieg, Dept Landscape Ecol & Environm Syst Anal, Langer Kamp 19c, D-38106 Braunschweig, Germany
基金
巴西圣保罗研究基金会;
关键词
Big data; Time-Series mining; Random forest algorithm; Land use and Land cover mapping (LULC); Multi-Sensor; CROP CLASSIFICATION; NDVI; PERFORMANCE; EXPANSION; SENSOR; STATE;
D O I
10.1016/j.jag.2019.05.005
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The paradox between environmental conservation and economic development is a challenge for Brazil, where there is a complex and dynamic agricultural scenario. This reinforces the need for effective methods for the detailed mapping of agriculture. In this work, we employed land surface phenological metrics derived from dense satellite image time series to classify agricultural land in the Cerrado biome. We used all available Landsat images between April 2013 and April 2017, applying a weighted ensemble of Radial Basis Function (RBF) convolution filters as a kernel smoother to fill data gaps such as cloud cover and Scan Line Corrector (SLC)-off data. Through this approach, we created a dense Enhanced Vegetation Index (EVI) data cube with an 8-day temporal resolution and derived phenometrics for a Random Forest (RF) classification. We used a hierarchical classification with four levels, from land cover to crop rotation classes. Most of the classes showed accuracies higher than 90%. Single crop and Non-commercial crop classes presented lower accuracies. However, we showed that phenometrics derived from dense Landsat-like image time series, in a hierarchical classification scheme, has a great potential for detailed agricultural mapping. The results are promising and show that the method is consistent and robust, being applicable to mapping agricultural land throughout the entire Cerrado.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Agricultural Intensification Can Preserve the Brazilian Cerrado: Applying Lessons From Mato Grosso and Goias to Brazil's Last Agricultural Frontier
    Spera, Stephanie
    [J]. TROPICAL CONSERVATION SCIENCE, 2017, 10
  • [42] Land-use change affects water recycling in Brazil's last agricultural frontier
    Spera, Stephanie A.
    Galford, Gillian L.
    Coe, Michael T.
    Macedo, Marcia N.
    Mustard, John F.
    [J]. GLOBAL CHANGE BIOLOGY, 2016, 22 (10) : 3405 - 3413
  • [43] Moment of truth for the Cerrado hotspot
    Strassburg, Bernardo B. N.
    Brooks, Thomas
    Feltran-Barbieri, Rafael
    Iribarrem, Alvaro
    Crouzeilles, Renato
    Loyola, Rafael
    Latawiec, Agnieszka E.
    Oliveira Filho, Francisco J. B.
    Scaramuzza, Carlos A. de M.
    Scarano, Fabio R.
    Soares-Filho, Britaldo
    Balmford, Andrew
    [J]. NATURE ECOLOGY & EVOLUTION, 2017, 1 (04):
  • [44] Studies on the Rapid Expansion of Sugarcane for Ethanol Production in Sao Paulo State (Brazil) Using Landsat Data
    Theodor Rudorff, Bernardo Friedrich
    de Aguiar, Daniel Alves
    da Silva, Wagner Fernando
    Sugawara, Luciana Miura
    Adami, Marcos
    Moreira, Mauricio Alves
    [J]. REMOTE SENSING, 2010, 2 (04) : 1057 - 1076
  • [45] Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
    Vermote, Eric
    Justice, Chris
    Claverie, Martin
    Franch, Belen
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 185 : 46 - 56
  • [46] Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains
    Wardlow, Brian D.
    Egbert, Stephen L.
    Kastens, Jude H.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2007, 108 (03) : 290 - 310
  • [47] Wulder M. A, 2012, REMOTE SENS ENVIRON, V118, P127
  • [48] [徐涵秋 Xu Hanqiu], 2005, [遥感学报, Journal of Remote Sensing], V9, P589
  • [49] A support vector machine to identify irrigated crop types using time-series Landsat NDVI data
    Zheng, Baojuan
    Myint, Soe W.
    Thenkabail, Prasad S.
    Aggarwal, Rimjhim M.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 34 : 103 - 112
  • [50] Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images
    Zhu, Zhe
    Wang, Shixiong
    Woodcock, Curtis E.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 159 : 269 - 277