Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series

被引:67
作者
Bendini, Hugo do Nascimento [1 ]
Fonseca, Leila Maria Garcia [1 ]
Schwieder, Marcel [2 ]
Korting, Thales Sehn [1 ]
Rufin, Philippe [2 ,3 ]
Sanches, Ieda Del Arco [1 ]
Leitao, Pedro J. [2 ,4 ]
Hostert, Patrick [2 ,3 ]
机构
[1] Natl Inst Space Res INPE, Sao Jose Dos Campos, SP, Brazil
[2] Humboldt Univ, Geog Dept, Unter Linden 6, D-10099 Berlin, Germany
[3] Humboldt Univ, Integrat Res Inst Transformat Human Environm Syst, Unter Linden 6, D-10099 Berlin, Germany
[4] Tech Univ Braunschwieg, Dept Landscape Ecol & Environm Syst Anal, Langer Kamp 19c, D-38106 Braunschweig, Germany
基金
巴西圣保罗研究基金会;
关键词
Big data; Time-Series mining; Random forest algorithm; Land use and Land cover mapping (LULC); Multi-Sensor; CROP CLASSIFICATION; NDVI; PERFORMANCE; EXPANSION; SENSOR; STATE;
D O I
10.1016/j.jag.2019.05.005
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The paradox between environmental conservation and economic development is a challenge for Brazil, where there is a complex and dynamic agricultural scenario. This reinforces the need for effective methods for the detailed mapping of agriculture. In this work, we employed land surface phenological metrics derived from dense satellite image time series to classify agricultural land in the Cerrado biome. We used all available Landsat images between April 2013 and April 2017, applying a weighted ensemble of Radial Basis Function (RBF) convolution filters as a kernel smoother to fill data gaps such as cloud cover and Scan Line Corrector (SLC)-off data. Through this approach, we created a dense Enhanced Vegetation Index (EVI) data cube with an 8-day temporal resolution and derived phenometrics for a Random Forest (RF) classification. We used a hierarchical classification with four levels, from land cover to crop rotation classes. Most of the classes showed accuracies higher than 90%. Single crop and Non-commercial crop classes presented lower accuracies. However, we showed that phenometrics derived from dense Landsat-like image time series, in a hierarchical classification scheme, has a great potential for detailed agricultural mapping. The results are promising and show that the method is consistent and robust, being applicable to mapping agricultural land throughout the entire Cerrado.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] AGROCONSULT, 2018, AGROCONSULT CONS E P
  • [2] [Anonymous], 2018, RAPID SOYBEAN GROWTH
  • [3] Big earth observation time series analysis for monitoring Brazilian agriculture
    Araujo Picoli, Michelle Cristina
    Camara, Gilberto
    Sanches, Ieda
    Simoes, Rolf
    Carvalho, Alexandre
    Maciel, Adeline
    Coutinho, Alexandre
    Esquerdo, Julio
    Antunes, Joao
    Begotti, Rodrigo Anzolin
    Arvor, Damien
    Almeida, Claudio
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 145 : 328 - 339
  • [4] Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil
    Arvor, Damien
    Jonathan, Milton
    Penello Meirelles, Margareth Simoes
    Dubreuil, Vincent
    Durieux, Laurent
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (22) : 7847 - 7871
  • [5] Azevedo T., 2018, AGU FALL M, pB22A
  • [6] USING LANDSAT 8 IMAGE TIME SERIES FOR CROP MAPPING IN A REGION OF CERRADO, BRAZIL
    Bendini, H. do N.
    Sanches, I. D.
    Korting, T. S.
    Fonseca, L. M. G.
    Luiz, A. J. B.
    Formaggio, A. R.
    [J]. XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 845 - 850
  • [7] Bendini H. N, 2017, BRAZILIAN J CARTOGRA, V69
  • [8] Temporal series of EVI from MODIS sensor for land use and land cover mapping of western Bahia
    Borges, Elane Fiuza
    Sano, Edson Eyji
    [J]. BOLETIM DE CIENCIAS GEODESICAS, 2014, 20 (03): : 526 - 547
  • [9] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [10] Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data
    Brown, J. Christopher
    Kastens, Jude H.
    Coutinho, Alexandre Camargo
    Victoria, Daniel de Castro
    Bishop, Christopher R.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2013, 130 : 39 - 50