Parabolic equation in time and space dependent anisotropic Musielak-Orlicz spaces in absence of Lavrentiev's phenomenon

被引:26
作者
Chlebicka, Iwona [1 ,2 ]
Gwiazda, Piotr [1 ]
Zatorska-Goldstein, Anna [2 ]
机构
[1] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Univ Warsaw, Inst Appl Math & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2019年 / 36卷 / 05期
关键词
Existence of solutions; Musielak-Orlicz spaces; Parabolic problems; BOUNDARY-VALUE-PROBLEMS; NON-NEWTONIAN FLUIDS; RENORMALIZED SOLUTIONS; ELLIPTIC-EQUATIONS; REGULARITY; INEQUALITIES; BOUNDEDNESS; FUNCTIONALS; EXISTENCE; INTEGRALS;
D O I
10.1016/j.anihpc.2019.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a general nonlinear parabolic equation on a Lipschitz bounded domain in R-N, {partial derivative(t)u - div A(t, x, del u) = f(t, x) in Omega(T), u(t, x) = 0 on (0,T) x partial derivative Omega, u(0, x) = u(0)(x) in Omega, with f is an element of L-infinity(Omega(T)) and u(0) is an element of L-infinity(Omega). The growth of the monotone vector field A is controlled by a generalized fully anisotropic N-function M : [0, T) x Q x R-N -> [0, infinity) inhomogeneous in time and space, and under no growth restrictions on the last variable. It results in the need of the integration by parts formula which has to be formulated in an advanced way. Existence and uniqueness of solutions are proven when the Musielak-Orlicz space is reflexive OR in absence of Lavrentiev's phenomenon. To ensure approximation properties of the space we impose natural assumption that the asymptotic behaviour of the modular function is sufficiently balanced. Its instances are log-Holder continuity of variable exponent or optimal closeness condition for powers in double phase spaces. The noticeable challenge of this paper is considering the problem in non-reflexive and inhomogeneous fully anisotropic space that changes along time. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1431 / 1465
页数:35
相关论文
共 57 条
[1]   Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces [J].
Ahmida, Youssef ;
Chlebicka, Iwona ;
Gwiazda, Piotr ;
Youssfi, Ahmed .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (09) :2538-2571
[2]  
Alberico A., 2018, PREPRINT
[3]   Comparison estimates in anisotropic variational problems [J].
Alberico, Angela ;
Cianchi, Andrea .
MANUSCRIPTA MATHEMATICA, 2008, 126 (04) :481-503
[4]   Comparison results for nonlinear anisotropic parabolic problems [J].
Alberico, Angela ;
Di Blasio, Giuseppina ;
Feo, Filomena .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2017, 28 (02) :305-322
[5]   Boundedness of Solutions to Anisotropic Variational Problems [J].
Alberico, Angela .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) :470-486
[6]  
[Anonymous], 1974, MATH LEHRBUCHER MONO
[7]   Dirichlet problems for fully anisotropic elliptic equations [J].
Barletta, Giuseppina ;
Cianchi, Andrea .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (01) :25-60
[8]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[9]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[10]   A variational approach to doubly nonlinear equations [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marceilini, Paolo ;
Scheven, Christoph .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (04) :739-772