Quantization of fractional systems using WKB approximation

被引:8
作者
Rabei, Eqab M. [2 ]
Muslih, Sami I. [3 ]
Baleanu, Dumitru [1 ,4 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Al Al Bayt Univ, Dept Phys, Mafraq 25113, Jordan
[3] So Illinois Univ, Carbondale, IL 62901 USA
[4] Inst Space Sci, R-76900 Magurele, Romania
关键词
Fractional derivative; Fractional WKB approximation; Hamilton's principle function; HAMILTON-JACOBI TREATMENT; LINEAR VELOCITIES; FORMULATION; LAGRANGIANS; FORMALISM;
D O I
10.1016/j.cnsns.2009.05.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Caputo's fractional derivative is used to quantize fractional systems using (WKB) approximation. The wave function is build such that the phase factor is the same as the Hamilton's principle function S. The energy eigenvalue is found to be in exact agreement with the classical case. To demonstrate our approach an example is investigated in details. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:807 / 811
页数:5
相关论文
共 28 条
[1]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[2]  
[Anonymous], J PHYS A
[3]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[4]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[5]   Fractional Hamilton formalism within Caputo's derivative [J].
Baleanu, Dumitru ;
Agrawal, Om. P. .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) :1087-1092
[6]  
Goldstein H., 1980, Classical Mechanics, V2nd
[7]  
Griffiths D. J., 1995, Introduction to quantum mechanics
[8]  
Hilfer R., 2000, Applications of Fractional Calculus in Physics, DOI DOI 10.1142/3779
[9]  
Kilbas AA., 2006, Theory and Applications of Fractional Differential Equations, V204, DOI DOI 10.1016/S0304-0208(06)80001-0