Periodic Solution of a Non-Smooth Double Pendulum with Unilateral Rigid Constrain

被引:9
作者
Guo, Xiuying [1 ,2 ]
Zhang, Gang [1 ]
Tian, Ruilan [3 ]
机构
[1] Hebei Normal Univ, Dept Math & Informat Sci, Shijiazhuang 050000, Hebei, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuan 050043, Peoples R China
[3] Shijiazhuang Tiedao Univ, Dept Mech Engn, Shijiazhuang 050043, Hebei, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 07期
关键词
non-smooth high-dimensional system; asymmetric system; impact periodic solution; impact recovery matrix; non-smooth analytic solution; CHAOTIC THRESHOLD;
D O I
10.3390/sym11070886
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a double pendulum model is presented with unilateral rigid constraint under harmonic excitation, which leads to be an asymmetric and non-smooth system. By introducing impact recovery matrix, modal analysis, and matrix theory, the analytical expressions of the periodic solutions for unilateral double-collision will be discussed in high-dimensional non-smooth asymmetric system. Firstly, the impact laws are classified in order to detect the existence of periodic solutions of the system. The impact recovery matrix is introduced to transform the impact laws of high-dimensional system into matrix. Furthermore, by use of modal analysis and matrix theory, an invertible transformation is constructed to obtain the parameter conditions for the existence of the impact periodic solution, which simplifies the calculation and can be easily extended to high-dimensional non-smooth system. Hence, the range of physical parameters and the restitution coefficients is calculated theoretically and non-smooth analytic expression of the periodic solution is given, which provides ideas for the study of approximate analytical solutions of high-dimensional non-smooth system. Finally, numerical simulation is carried out to obtain the impact periodic solution of the system with small angle motion.
引用
收藏
页数:14
相关论文
共 21 条
[1]   Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems [J].
Battelli, F. ;
Feckan, M. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (22) :1962-1975
[2]  
Bi QS, 2000, APPL MATH MECH-ENGL, V21, P255
[3]  
CAO DQ, 1997, ACTA MECH SINICA, V29, P74
[4]  
Guan T. M., 2018, J DALIAN JIAOTONG U, V39, P65
[5]  
Han W., 2004, J DYN CONTROL, V2, P24
[6]  
Han W., 2003, J MECH, V35, P723
[7]  
Hong Z. R, 2017, J LANZHOU PETROCHEM, V17, P1
[8]  
Hu H. Y., 1994, ACTA SOLID MECH SIN, V15, P135
[9]   Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system [J].
Izadgoshasb, Iman ;
Lim, Yee Yan ;
Tang, Lihua ;
Padilla, Ricardo Vasquez ;
Tang, Zi Sheng ;
Sedighi, Mohammadreza .
ENERGY CONVERSION AND MANAGEMENT, 2019, 184 :559-570
[10]  
Jin D. P., 1999, ADV MECH, V25, P155