Parallel and interacting Markov chain Monte Carlo algorithm

被引:9
|
作者
Campillo, Fabien [2 ]
Rakotozafy, Rivo [3 ]
Rossi, Vivien [1 ]
机构
[1] CIRAD, Res Unit, Montpellier, France
[2] INRIA, INRA, MERE Project Team, Montpellier, France
[3] Univ Fianarantsoa, Fianarantsoa, Madagascar
关键词
Markov chain Monte Carlo method; Interacting chains; Hidden Markov model; CONVERGENCE;
D O I
10.1016/j.matcom.2009.04.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In many situations it is important to be able to propose N independent realizations of a given distribution law. We propose a strategy for making N parallel Monte Carlo Markov chains (MCMC) interact in order to get an approximation of an independent N-sample of a given target law. In this method each individual chain proposes candidates for all other chains. We prove that the set of interacting chains is itself a MCMC method for the product of N target measures. Compared to independent parallel chains this method is more time consuming. but we show through examples that it possesses many advantages. This approach is applied to a biomass evolution model. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3424 / 3433
页数:10
相关论文
共 50 条
  • [1] Interacting Particle Markov Chain Monte Carlo
    Rainforth, Tom
    Naesseth, Christian A.
    Lindsten, Fredrik
    Paige, Brooks
    van de Meent, Jan-Willem
    Doucet, Arnaud
    Wood, Frank
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [2] Parallel Markov chain Monte Carlo simulations
    Ren, Ruichao
    Orkoulas, G.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (21):
  • [3] A Quantum Parallel Markov Chain Monte Carlo
    Holbrook, Andrew J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1402 - 1415
  • [4] SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
    Brockwell, Anthony
    Del Moral, Pierre
    Doucet, Arnaud
    ANNALS OF STATISTICS, 2010, 38 (06): : 3387 - 3411
  • [5] Fluctuations of interacting Markov chain Monte Carlo methods
    Bercu, Bernard
    Del Moral, Pierre
    Doucet, Arnaud
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1304 - 1331
  • [6] A new methodology for Bayesian history matching using parallel interacting Markov chain Monte Carlo
    Maschio, Celio
    Schiozer, Denis J.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (04) : 498 - 529
  • [7] PARALLEL MARKOV CHAIN MONTE CARLO FOR SENSOR SCHEDULING
    Raihan, Dilshad
    Faber, Weston
    Chakravorty, Suman
    Hussein, Islam
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 2447 - 2454
  • [8] A new class of interacting Markov chain Monte Carlo methods
    Del Moral, Pierre
    Doucet, Arnaud
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) : 79 - 83
  • [9] CONVERGENCE OF ADAPTIVE AND INTERACTING MARKOV CHAIN MONTE CARLO ALGORITHMS
    Fort, G.
    Moulines, E.
    Priouret, P.
    ANNALS OF STATISTICS, 2011, 39 (06): : 3262 - 3289
  • [10] Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm
    Rigat, F.
    Mira, A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 1450 - 1467