Partial root-zone drying irrigation increases water-use efficiency of tobacco plants amended with biochar

被引:17
|
作者
Liu, Xuezhi [1 ,3 ,4 ]
Wei, Zhenhua [1 ,3 ]
Manevski, Kiril [4 ,5 ]
Liu, Jie [1 ,3 ]
Ma, Yingying [1 ,3 ]
Andersen, Mathias Neumann [4 ,5 ]
Liu, Fulai [2 ,3 ,5 ]
机构
[1] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Weihui Rd 23, Yangling 712100, Shaanxi, Peoples R China
[2] Univ Copenhagen, Fac Sci, Dept Plant & Environm Sci, Hojbakkegaard Alle 13, DK-2630 Taastrup, Denmark
[3] Northwest A&F Univ, Minist Educ, Key Lab Agr Soil & Water Engn Arid & Semiarid Are, Yangling 712100, Shaanxi, Peoples R China
[4] Aarhus Univ, Dept Agroecol, Blichers Alle 20, DK-8830 Tjele, Denmark
[5] Univ Chinese Acad Sci, Sino Danish Ctr Educ & Res, Eastern Yanqihu Campus,380 Huaibeizhuang, Beijing 101400, Peoples R China
关键词
Alternate partial root-zone drying irrigation; Abscisic acid; Carbon isotope discrimination; Biochar amendment; Stomatal conductance; Stomatal density and stomatal size; CARBON-ISOTOPE DISCRIMINATION; LEAF GAS-EXCHANGE; STOMATAL DEVELOPMENT; DEFICIT IRRIGATION; GENETIC MANIPULATION; POTATO LEAVES; ABSCISIC-ACID; RESPONSES; DENSITY; CO2;
D O I
10.1016/j.indcrop.2021.113487
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Modulation of stomatal morphology and behavior is associated with changes in water use of the plant due to varied input of water, yet the underlying mechanism of such association remains largely elusive. We investigated the effects of reduced irrigation on leaf gas exchange and stomatal morphology of tobacco (Nicotiana tabacum L.) plants grown in a Ferralsol and an Anthrosol amended by softwood (SWB) and wheat (Triticum aestivum L.) straw biochar (WSB). Compared to plants grown under full irrigation (FI), deficit irrigation (DI) and especially alternate partial root-zone drying irrigation (PRD) significantly decreased the stomatal conductance (gs) while marginally reducing the leaf photosynthetic rate (An), thereby enhancing intrinsic water-use efficiency (WUEi=An/gs), whereas the effects of biochars were not evident. Moreover, reduced irrigation, particularly PRD, increased the concentration of abscisic acid in the leaf ([ABA]leaf) compared to FI, which was further amplified by WSB addition. Leaf carbon isotope discrimination (?13Cleaf) responded similarly to irrigation and biochar addition as gs. Compared to FI, reduced irrigation (DI and PRD) lowered stomata size (SS) but increased their density (SD) and this effect was more pronounced for PRD coupled with WSB. Moreover, SD was significantly positively correlated with [ABA]leaf, while negatively correlated with gs, soil water content, and ?13Cleaf. The opposite correlations between SS and these variables were observed. The results collectively suggest that ABAmediated the effects of PRD combined with WSB amendment resulted in higher SD and lower SS and gs, contributing to the increased WUEi and long-term WUE of tobacco plants.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effects of partial root-zone drying irrigation on yield, fruit quality, and water-use efficiency in processing tomato
    Casa, R.
    Rouphael, Y.
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2014, 89 (04): : 389 - 396
  • [2] Water-use efficiency and physiological responses of maize under partial root-zone irrigation
    Li, Fusheng
    Wei, Caihui
    Zhang, Fucang
    Zhang, Jianhua
    Nong, Mengling
    Kang, Shaozhong
    AGRICULTURAL WATER MANAGEMENT, 2010, 97 (08) : 1156 - 1164
  • [3] Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress
    Hou, Jingxiang
    Liu, Xuezhi
    Zhang, Jiarui
    Wei, Zhenhua
    Ma, Yingying
    Wan, Heng
    Liu, Jie
    Cui, Bingjing
    Zong, Yuzheng
    Chen, Yiting
    Liang, Kehao
    Liu, Fulai
    AGRICULTURAL WATER MANAGEMENT, 2023, 290
  • [4] Partial root-zone drying irrigation improves growth and physiology of tobacco amended with biochar by modulating phytohormonal profile and antioxidant system
    Xuezhi Liu
    Zhenhua Wei
    Jingxiang Hou
    Heng Wan
    Qiang Zhang
    Yingying Ma
    Fulai Liu
    Plant and Soil, 2022, 474 : 561 - 579
  • [5] Partial root-zone drying irrigation improves growth and physiology of tobacco amended with biochar by modulating phytohormonal profile and antioxidant system
    Liu, Xuezhi
    Wei, Zhenhua
    Hou, Jingxiang
    Wan, Heng
    Zhang, Qiang
    Ma, Yingying
    Liu, Fulai
    PLANT AND SOIL, 2022, 474 (1-2) : 561 - 579
  • [6] Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency
    Yactayo, Wendy
    Ramirez, David A.
    Gutierrez, Raymundo
    Mares, Victor
    Posadas, Adolfo
    Quiroz, Roberto
    AGRICULTURAL WATER MANAGEMENT, 2013, 123 : 65 - 70
  • [7] Biochar amendment combined with partial root-zone drying irrigation alleviates salinity stress and improves root morphology and water use efficiency in cotton plant
    Hou, Jingxiang
    Wan, Heng
    Liang, Kehao
    Cui, Bingjing
    Ma, Yingying
    Chen, Yiting
    Liu, Jie
    Wang, Yin
    Liu, Xuezhi
    Zhang, Jiarui
    Wei, Zhenhua
    Liu, Fulai
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 904
  • [8] A Review on Partial Root-Zone Drying Irrigation
    Sepaskhah, A. R.
    Ahmadi, S. H.
    INTERNATIONAL JOURNAL OF PLANT PRODUCTION, 2010, 4 (04) : 241 - 258
  • [9] Dynamics of root water uptake and water use efficiency under alternate partial root-zone irrigation
    Li, C. X.
    Zhou, X. G.
    Sun, J. S.
    Wang, H. Z.
    Gao, Y.
    DESALINATION AND WATER TREATMENT, 2014, 52 (13-15) : 2805 - 2810
  • [10] Effects of Partial Root-Zone Irrigation on the Water Use Efficiency and Root Water and Nitrate Uptake of Corn
    Barideh, Rahman
    Besharat, Sina
    Morteza, Mohamad
    Rezaverdinejad, Vahid
    WATER, 2018, 10 (04)