Analytical solutions of the Gerdjikov-Ivanov equation by using exp(-φ(ξ))-expansion method

被引:99
作者
Kadkhoda, Nematollah [1 ]
Jafari, Hossein [2 ,3 ]
机构
[1] Bozorgmehr Univ Qaenat, Dept Math, Fac Basic Sci, Qaenat, Iran
[2] Univ Mazandaran, Dept Math, Babol Sar, Iran
[3] Univ South Africa, Dept Math Sci, ZA-0003 Unisa, South Africa
来源
OPTIK | 2017年 / 139卷
关键词
Nonlinear optics; The Gerdjikov-Ivanov equation exp(-phi(xi))-expansion method; Travelling waves; Nonlinear evolution equations; TRAVELING-WAVE SOLUTIONS;
D O I
10.1016/j.ijleo.2017.03.078
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Gerdjikov-Ivanov equation which appears in quanta field theory, nonlinear optics, weak nonlinear dispersive water wave, etc., is discussed. We study a new direct approach namely exp(-phi(xi))-expansion method to seek exact solutions of Gerdjikov-Ivanov equation which include variety of models. These exact solutions include the hyperbolic, trigonometric, rational and exponential functions with some arbitrary parameters. It is shown that the method is quite efficient and useful to obtain exact solutions of different types of nonlinear differential equations. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:72 / 76
页数:5
相关论文
共 20 条
[1]  
Agrawal G. P., 2001, NONLINEAR FIBERS OPT
[2]  
Bekir A., 2015, J. Assoc. Arab Univ. Basic Appl. Sci, V17, P1
[3]   Variable separation and algebro-geometric solutions of the Gerdjikov-lvanov equation [J].
Dai, HH ;
Fan, EG .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :93-101
[4]   Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation [J].
Fan, EG .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) :7769-7782
[5]   The higher order rogue wave solutions of the Gerdjikov-Ivanov equation [J].
Guo, Lijuan ;
Zhang, Yongshuai ;
Xu, Shuwei ;
Wu, Zhiwei ;
He, Jingsong .
PHYSICA SCRIPTA, 2014, 89 (03)
[6]   Exp-function method for nonlinear wave equations [J].
He, Ji-Huan ;
Wu, Xu-Hong .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :700-708
[8]   Travelling wave solutions of nonlinear evolution equations using the simplest equation method [J].
Jafari, H. ;
Kadkhoda, N. ;
Khalique, C. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) :2084-2088
[9]  
Jafari H., 2013, J KING SAUD UNIV SCI, V25, P57, DOI [10.1016/j.jksus.2012.02.002, DOI 10.1016/j.jksus.2012.02.002]
[10]   Fractional Subequation Method for Cahn-Hilliard and Klein-Gordon Equations [J].
Jafari, Hossein ;
Tajadodi, Haleh ;
Kadkhoda, Nematollah ;
Baleanu, Dumitru .
ABSTRACT AND APPLIED ANALYSIS, 2013,