Combined First-Principle Calculations and Experimental Study on Multi-Component Olivine Cathode for Lithium Rechargeable Batteries

被引:126
作者
Gwon, Hyeokjo [1 ]
Seo, Dong-Hwa [1 ]
Kim, Sung-Wook [1 ]
Kim, Jongsoon [1 ]
Kang, Kisuk [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Inst Ecoenergy, Taejon 305701, South Korea
关键词
ELECTROCHEMICAL PERFORMANCE; ELECTRONIC-STRUCTURE; ROOM-TEMPERATURE; PHOSPHO-OLIVINES; PHASE-STABILITY; HIGH-POWER; LIFEPO4; TRANSFORMATIONS; DIFFRACTION; CAPACITY;
D O I
10.1002/adfm.200900414
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical properties and phase stability of the multi-component olivine compound LiMn1/3Fe1/3Co1/3PO4 are studied experimentally and with first-principles calculation. The formation of a solid solution between LiMnPO4, LiFePO4, and LiCoPO4 at this composition is confirmed by XRD patterns and the calculated energy. The experimental and first-principle results indicate that there are three distinct regions in the electrochemical profile at quasi-open-circuit circuit potentials of similar to 3.5V, similar to 4.1V, and similar to 4.7V, which are attributed 50 Fe3+/Fe-2+,Fe- , Mn3+/Mn2+, and Co3+/Co2+ redox couples, respectively. However, exceptionally large polarization is observed only for the region near 4.1V of Mn3+/Mn2+ redox couples, implying; an intrinsic charge transfer problem. An ex situ XRD study reveals that the reversible one-phase reaction of Li extraction/insertion mechanism prevails, unexpectedly, for all lithium compositions of LixMn1/3Fe1/3Co1/3PO4 (0 <= x <= 1) at room temperature. This is the first demonstration that the well-ordered non-nanocrystalline (less than 1% Li-M disorder and a few hundred nanometer size particle) olivine electrode can be operated solely in a one-phase mode.
引用
收藏
页码:3285 / 3292
页数:8
相关论文
共 45 条
[1]   Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries [J].
Amine, K ;
Yasuda, H ;
Yamachi, M .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (04) :178-179
[2]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[3]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[4]   First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method [J].
Anisimov, VI ;
Aryasetiawan, F ;
Lichtenstein, AI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (04) :767-808
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]   Thermal stability of LiCoPO4 cathodes [J].
Bramnik, Natalia N. ;
Nikolowski, Kristian ;
Trots, Dmytro M. ;
Ehrenberg, Helmut .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (06) :A89-A93
[7]   Phase transitions occurring upon lithium insertion-extraction of LiCoPO4 [J].
Bramnik, Natalia N. ;
Nikolowski, Kristian ;
Baehtz, Carsten ;
Bramnik, Kirill G. ;
Ehrenberg, Helmut .
CHEMISTRY OF MATERIALS, 2007, 19 (04) :908-915
[8]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[9]   Hydrothermal synthesis of cathode materials [J].
Chen, Jiajun ;
Wang, Shijun ;
Whittingham, M. Stanley .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :442-448
[10]  
CHIANG YM, 2008, Patent No. 2008069858