Development of Dutch occupancy and heating profiles for building simulation

被引:38
作者
Guerra-Santin, O. [1 ]
Silvester, S. [1 ]
机构
[1] Delft Univ Technol, Fac Ind Design Engn, NL-2628 CE Delft, Netherlands
关键词
energy demand; heating; occupancy profiles; occupant behaviour; performance simulation; personas; retrofit; simulation tools; ENERGY DEMAND; PERFORMANCE; BEHAVIOR; PREDICTION; PATTERNS; MODEL; UK;
D O I
10.1080/09613218.2016.1160563
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Building simulations are often used to predict energy demand and to determine the financial feasibility of the low-carbon projects. However, recent research has documented large differences between actual and predicted energy consumption. In retrofit projects, this difference creates uncertainty about the payback periods and, as a consequence, owners are reluctant to invest in energy-efficient technologies. The differences between the actual and the expected energy consumption are caused by inexact input data on the thermal properties of the building envelope and by the use of standard occupancy data. Integrating occupancy patterns of diversity and variability in behaviour into building simulation can potentially foresee and account for the impact of behaviour in building performance. The presented research develops and applies occupancy heating profiles for building simulation tools in order create more accurate predictions of energy demand and energy performance. Statistical analyses were used to define the relationship between seven most common household types and occupancy patterns in the Netherlands. The developed household profiles aim at providing energy modellers with reliable, detailed and ready-to-use occupancy data for building simulation. This household-specific occupancy information can be used in projects that are highly sensitive to the uncertainty related to return of investments.
引用
收藏
页码:396 / 413
页数:18
相关论文
共 38 条
[1]  
AgentschapNL, 2011, KOMPAS EN
[2]   Occupants' behavior and activity patterns influencing the energy consumption in the Kuwaiti residences [J].
Al-Mumin, A ;
Khattab, O ;
Sridhar, G .
ENERGY AND BUILDINGS, 2003, 35 (06) :549-559
[3]   Modelling the effect of realistic domestic energy demand profiles and internal gains on the predicted performance of solar thermal systems [J].
Ampatzi, Eleni ;
Knight, Ian .
ENERGY AND BUILDINGS, 2012, 55 :285-298
[4]  
[Anonymous], 2004, 9012004 ASHRAE
[5]  
[Anonymous], 2008, SUSTAINABLE NO EUROP
[6]   A comprehensive analysis of the impact of occupancy parameters in energy simulation of office buildings [J].
Azar, Elie ;
Menassa, Carol C. .
ENERGY AND BUILDINGS, 2012, 55 :841-853
[7]  
Capasso A., 1994, IEEE T POWER SYSTEMS, V9
[8]   Occupancy schedules learning process through a data mining framework [J].
D'Oca, Simona ;
Hong, Tianzhen .
ENERGY AND BUILDINGS, 2015, 88 :395-408
[9]   Occupancy diversity factors for common university building types [J].
Davis, James A., III ;
Nutter, Darin W. .
ENERGY AND BUILDINGS, 2010, 42 (09) :1543-1551
[10]   Revealing occupancy patterns in an office building through the use of occupancy sensor data [J].
Duarte, Carlos ;
Van den Wymelenberg, Kevin ;
Rieger, Craig .
ENERGY AND BUILDINGS, 2013, 67 :587-595