Quaternionic Numerical Ranges of Normal Quaternion Matrices

被引:0
作者
Feng Lianggui [1 ]
机构
[1] Natl Univ Def Technol, Dept Syst Sci & Math, Changsha 410073, Hunan, Peoples R China
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2 | 2009年 / 1168卷
关键词
numerical range; quaternion matrix; canonical form; QUANTUM-MECHANICS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By the Jordan canonical block-entry form introduced in this paper, a practical method of determining the convexity and an estimation of the location on the quaternionic numerical range are given for a normal quaternion matrix.
引用
收藏
页码:100 / 106
页数:7
相关论文
共 13 条
[1]  
Adler SL., 1995, QUATERNIONIC QUANTUM
[2]  
De Leo S, 2000, J PHYS A-MATH GEN, V33, P2971, DOI 10.1088/0305-4470/33/15/306
[3]   Quaternionic eigenvalue problem [J].
De Leo, S ;
Scolarici, G ;
Solombrino, L .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (11) :5815-5829
[4]  
Dray T., 1998, ADV APPL CLIFFORD AL, V8, P341, DOI DOI 10.1007/BF03043104
[5]   FOUNDATIONS OF QUATERNION QUANTUM MECHANICS [J].
FINKELSTEIN, D ;
JAUCH, JM ;
SPEISER, D ;
SCHIMINO.S .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (02) :207-&
[6]  
Horn R.A., 1994, TOPICS MATRIX ANAL, DOI DOI 10.1017/CBO9780511840371
[7]  
HUNGERFORD TW, 1974, ALGEBRA
[8]  
So W, 1994, Linear and Multilinear Algebra, V37, P175
[9]  
Zhang F., 1995, J MATH PHYS SCI, V29, P235
[10]   Quaternions and matrices of quaternions [J].
Zhang, FZ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 251 :21-57