Difference sets and polynomials of prime variables

被引:12
作者
Li, Hongze [1 ]
Pan, Hao [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
difference set; polynomial of prime variable; density; SEQUENCES; THEOREM; NUMBERS;
D O I
10.4064/aa138-1-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:25 / 52
页数:28
相关论文
共 28 条
[1]  
[Anonymous], ANN MATH IN PRESS
[2]   DIFFERENCE SETS WITHOUT KAPPA-TH POWERS [J].
BALOG, A ;
PELIKAN, J ;
PINTZ, J ;
SZEMEREDI, E .
ACTA MATHEMATICA HUNGARICA, 1994, 65 (02) :165-187
[3]   Polynomial extensions of van der Waerden's and Szemeredi's theorems [J].
Bergelson, V ;
Leibman, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :725-753
[4]  
Bergelson V., 2008, Colloquium Mathematicum, V110, P1, DOI [10.4064/cm110-1-1, DOI 10.4064/CM110-1-1]
[5]   ON LAMBDA-L (P)-SUBSETS OF SQUARES [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 67 (03) :291-311
[6]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P107
[7]  
Davenport A., 1967, Grad. Texts in Math.
[8]   Multiple recurrence and convergence for sequences related to the prime numbers [J].
Frantzikinakis, Nikos ;
Host, Bernard ;
Kra, Bryna .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 611 :131-144
[9]   ERGODIC BEHAVIOR OF DIAGONAL MEASURES AND A THEOREM OF SZEMEREDI ON ARITHMETIC PROGRESSIONS [J].
FURSTENBERG, H .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 :204-256
[10]   A new proof of Szemeredi's theorem [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) :465-588