An explicit upper bound on disparity for trees of a given diameter

被引:0
|
作者
Cinzori, Isaac [1 ]
Johnson, Charles R. [2 ]
Lang, Hannah [3 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Branch duplication; distinct eigenvalues; graph of a matrix; seed; rooted seed;
D O I
10.1080/03081087.2021.1887070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the minimum number of distinct eigenvalues c(T) of a symmetric matrix whose graph is a given tree T is at least the diameter d(T) of that tree. However, the disparity c(T) - d(T) can be positive. Using branch duplication and rooted seeds, the notion of the `most complex seed' is introduced, and an explicit upper bound on the disparity is given for any tree of a given diameter.
引用
收藏
页码:4584 / 4596
页数:13
相关论文
共 4 条
  • [1] Diameter minimal trees
    Johnson, Charles R.
    Saiago, Carlos M.
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03) : 557 - 571
  • [2] UPPER BOUND FOR THE NUMBER OF DISTINCT EIGENVALUES OF A PERTURBED MATRIX
    Moon, Sunyo
    Park, Seungkook
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 115 - 124
  • [3] Growth allocation between height and stem diameter in nonsuppressed reproducing Abies mariesii trees
    Seki, Takeshi
    Ohta, Sadaaki
    Fujiwara, Takeshi
    Nakashizuka, Tohru
    PLANT SPECIES BIOLOGY, 2013, 28 (02) : 146 - 155
  • [4] An improved upper bound for the number of distinct eigenvalues of a matrix after perturbation
    Xu, Xuefeng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 523 : 109 - 117