共 4 条
An explicit upper bound on disparity for trees of a given diameter
被引:0
|作者:
Cinzori, Isaac
[1
]
Johnson, Charles R.
[2
]
Lang, Hannah
[3
]
机构:
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金:
美国国家科学基金会;
关键词:
Branch duplication;
distinct eigenvalues;
graph of a matrix;
seed;
rooted seed;
D O I:
10.1080/03081087.2021.1887070
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
It is known that the minimum number of distinct eigenvalues c(T) of a symmetric matrix whose graph is a given tree T is at least the diameter d(T) of that tree. However, the disparity c(T) - d(T) can be positive. Using branch duplication and rooted seeds, the notion of the `most complex seed' is introduced, and an explicit upper bound on the disparity is given for any tree of a given diameter.
引用
收藏
页码:4584 / 4596
页数:13
相关论文