Cosmological perturbation theory in 1+1 dimensions

被引:75
作者
McQuinn, Matthew [1 ]
White, Martin [2 ]
机构
[1] Univ Washington, Dept Astron, Seattle, WA 98195 USA
[2] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2016年 / 01期
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
cosmological parameters from LSS; galaxy surveys; power spectrum; baryon acoustic oscillations; FRIEDMAN-LEMAITRE COSMOLOGIES; LARGE-SCALE STRUCTURE; POWER-SPECTRUM; GRAVITATIONAL-INSTABILITY; COVARIANCE-MATRIX; LAGRANGIAN THEORY; REDSHIFT-SPACE; ANALYTIC MODEL; DENSITY; EVOLUTION;
D O I
10.1088/1475-7516/2016/01/043
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Many recent studies have highlighted certain failures of the standard Eulerian-space cosmological perturbation theory (SPT). Its problems include (1) not capturing large-scale bulk flows [leading to an 0(1) error in the 1-loop SPT prediction for the baryon acoustic peak in the correlation function], (2) assuming that the Universe behaves as a pressureless, inviscid fluid, and (3) treating fluctuations on scales that are non-perturbative as if they were. Recent studies have highlighted the successes of perturbation theory in Lagrangian space or theories that solve equations for the effective dynamics of smoothed fields. Both approaches mitigate some or all of the aforementioned issues with SPT. We discuss these physical developments by specializing to the simplified 1D case of gravitationally interacting sheets, which allows us to substantially reduces the analytic overhead and still (as we show) maintain many of the same behaviors as in 3D. In 1D, linear-order Lagrangian perturbation theory ("the Zeldovich approximation") is exact up to shell crossing, and we prove that nth- order Eulerian perturbation theory converges to the Zeldovich approximation as n -> infinity. In no 1D cosmology that we consider (including a CDM-like case and power-law models) do these theories describe accurately the matter power spectrum on any mildly nonlinear scale. We find that theories based on effective equations are much more successful at describing the dynamics. Finally, we discuss many topics that have recently appeared in the perturbation theory literature such as beat coupling, the shift and smearing of the baryon acoustic oscillation feature, and the advantages of Fourier versus configuration space. Our simplified 1D case serves as an intuitive review of these perturbation theory results.
引用
收藏
页数:44
相关论文
共 74 条
[1]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[2]  
[Anonymous], 2007, Phys. Rev. D
[3]  
Baldauf T., 2011, JCAP, V10
[4]  
Baumann D., 2012, JCAP, V07
[5]   Large-scale structure of the Universe and cosmological perturbation theory [J].
Bernardeau, F ;
Colombi, S ;
Gaztañaga, E ;
Scoccimarro, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3) :1-248
[6]   LAGRANGIAN THEORY OF GRAVITATIONAL-INSTABILITY OF FRIEDMAN-LEMAITRE COSMOLOGIES - A GENERIC 3RD-ORDER MODEL FOR NONLINEAR CLUSTERING [J].
BUCHERT, T .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1994, 267 (04) :811-820
[7]   LAGRANGIAN THEORY OF GRAVITATIONAL-INSTABILITY OF FRIEDMAN-LEMAITRE COSMOLOGIES AND THE ZELDOVICH APPROXIMATION [J].
BUCHERT, T .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1992, 254 (04) :729-737
[8]   Convolution Lagrangian perturbation theory for biased tracers [J].
Carlson, Jordan ;
Reid, Beth ;
White, Martin .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 429 (02) :1674-1685
[9]   Critical look at cosmological perturbation theory techniques [J].
Carlson, Jordan ;
White, Martin ;
Padmanabhan, Nikhil .
PHYSICAL REVIEW D, 2009, 80 (04)
[10]  
Carrasco J.J. M., 2012, JHEP, V09, p1206.2926