Sub-linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits

被引:58
作者
Baum, Carsten [1 ]
Bootle, Jonathan [2 ]
Cerulli, Andrea [2 ]
del Pino, Rafael [3 ]
Groth, Jens [2 ]
Lyubashevsky, Vadim [3 ]
机构
[1] Bar Ilan Univ, Ramat Gan, Israel
[2] UCL, London, England
[3] IBM Res Zurich, Ruschlikon, Switzerland
来源
ADVANCES IN CRYPTOLOGY - CRYPTO 2018, PT II | 2018年 / 10992卷
基金
欧洲研究理事会;
关键词
Sigma-protocol; Zero-knowledge argument; Arithmetic circuit; SIS assumption; INTERACTIVE PROOFS; COMPLEXITY;
D O I
10.1007/978-3-319-96881-0_23
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose the first zero-knowledge argument with sub-linear communication complexity for arithmetic circuit satisfiability over a prime p whose security is based on the hardness of the short integer solution (SIS) problem. For a circuit with N gates, the communication complexity of our protocol is O(root N lambda log(3) N), where lambda is the security parameter. A key component of our construction is a surprisingly simple zero-knowledge proof for pre-images of linear relations whose amortized communication complexity depends only logarithmically on the number of relations being proved. This latter protocol is a substantial improvement, both theoretically and in practice, over the previous results in this line of research of Damgard et al. (CRYPTO 2012), Baum et al. (CRYPTO 2016), Cramer et al. (EUROCRYPT 2017) and del Pino and Lyubashevsky (CRYPTO 2017), and we believe it to be of independent interest.
引用
收藏
页码:669 / 699
页数:31
相关论文
共 51 条
[1]  
Ajtai M., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P99, DOI 10.1145/237814.237838
[2]  
[Anonymous], LNCS
[3]  
[Anonymous], 2009, Post quantum cryptography
[4]  
[Anonymous], 2016, LNCS, DOI DOI 10.1007/978-3-662-49896-5
[5]  
[Anonymous], IACR CRYPTOLOGY EPRI
[6]  
[Anonymous], 2012, ITCS, DOI 10.1145/ 2090236.2090263
[7]  
[Anonymous], ACM CCS 17
[8]   NEW BOUNDS IN SOME TRANSFERENCE THEOREMS IN THE GEOMETRY OF NUMBERS [J].
BANASZCZYK, W .
MATHEMATISCHE ANNALEN, 1993, 296 (04) :625-635
[9]   How to Prove Knowledge of Small Secrets [J].
Baum, Carsten ;
Damgard, Ivan ;
Larsen, Kasper Green ;
Nielsen, Michael .
ADVANCES IN CRYPTOLOGY (CRYPTO 2016), PT III, 2016, 9816 :478-498
[10]  
Bendlin R, 2010, LECT NOTES COMPUT SC, V5978, P201, DOI 10.1007/978-3-642-11799-2_13