A generalization of a curious congruence on harmonic sums

被引:27
作者
Zhou, Xia [1 ]
Cai, Tianxin [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
Bernoulli numbers; congruences of harmonic sums; partitions;
D O I
10.1090/S0002-9939-06-08777-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Zhao established a curious harmonic congruence for prime p > 3: [GRAPHICS] In this note the authors extend it to the following congruence for any prime p > 3 and positive integer n <= p - 2: [GRAPHICS] Other improvements on congruences of harmonic sums are also obtained.
引用
收藏
页码:1329 / 1333
页数:5
相关论文
共 8 条
[1]  
CHUNGANG JI, 2005, P AM MATH SOC, V133, P3469
[2]  
Glaisher J. W. L., 1900, Q J MATH, V31, P321
[3]  
Glaisher J. W. L, 1901, Q J MATH, V32, P271
[4]   On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson [J].
Lehmer, E .
ANNALS OF MATHEMATICS, 1938, 39 :350-360
[5]   Congruences concerning Bernoulli numbers and Bernoulli polynomials [J].
Sun, ZH .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :193-223
[6]  
Washington L. C, 1997, INTRO CYCLOTOMIC FIE
[7]  
ZHAO J, MULTIPLE HARMONIC SU
[8]  
ZHAO J, BERNOULLI NUMBERS WO