TEMPLATE-BASED RECONSTRUCTION OF HUMAN EXTRAOCULAR MUSCLES FROM MAGNETIC RESONANCE IMAGES

被引:3
|
作者
Wei, Qi [1 ,2 ]
Sueda, Shinjiro [1 ]
Miller, Joel M. [3 ]
Demer, Joseph L. [4 ,5 ]
Pai, Dinesh K. [1 ]
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1W5, Canada
[2] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ USA
[3] Smith Kettlewell Eye Res Inst, San Francisco, CA USA
[4] Univ Calif Los Angeles, Jules Stein Eye Inst, Dept Neurol, Los Angeles, CA USA
[5] Univ Calif Los Angeles, Neurosci & Bioengn Interdepartmental Programs, Los Angeles, CA USA
来源
2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2 | 2009年
基金
加拿大自然科学与工程研究理事会;
关键词
3D reconstruction; surface fitting; orbit; extraocular muscle; magnetic resonance imaging;
D O I
10.1109/ISBI.2009.5192994
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Understanding the mechanisms of eye movement is difficult without a realistic biomechanical model. We present an efficient and robust computational framework for building subject-specific models of the orbit from magnetic resonance images (MRIs). We reconstruct three-dimensional geometric models of the major structures of the orbit (six extraocular muscles, orbital wall, optic nerve, and globe) by fitting a template to the MRIs of individual subjects. A generic template captures the anatomical properties of these orbital structures and serves as the prior knowledge to improve the completeness and robustness of the model reconstruction. We develop an automatic fitting process, which combines parametric surface fitting with successive image feature selections. Reconstructed orbit models from different subjects are demonstrated. The accuracy of the proposed method is validated through comparison of reconstructed extraocular muscle cross sections with manual segmentation. The Dice coefficient is used as the metric and good agreement is observed.
引用
收藏
页码:105 / +
页数:2
相关论文
共 50 条
  • [1] Deep-Learning-Based Segmentation of Extraocular Muscles from Magnetic Resonance Images
    Qureshi, Amad
    Lim, Seongjin
    Suh, Soh Youn
    Mutawak, Bassam
    Chitnis, Parag V.
    Demer, Joseph L.
    Wei, Qi
    BIOENGINEERING-BASEL, 2023, 10 (06):
  • [2] Magnetic resonance Imaging of human extraocular muscles in convergence
    Demer, JL
    Kono, R
    Wright, W
    JOURNAL OF NEUROPHYSIOLOGY, 2003, 89 (04) : 2072 - 2085
  • [3] Template-based Reconstruction of Complex Refactorings
    Prete, Kyle
    Rachatasumrit, Napol
    Sudan, Nikita
    Kim, Miryung
    2010 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE, 2010,
  • [4] Template-based Ear Modeling and Reconstruction
    Chu, Yingjun
    Zhang, Kanjian
    Wei, Haikun
    Wang, Yangang
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4118 - 4123
  • [5] Template-based reconstruction of the oral cavity
    Chepeha, Douglas B.
    ORAL ONCOLOGY, 2011, 47 : S10 - S11
  • [6] Reconstruction of the human cerebral cortex from magnetic resonance images
    Xu, CY
    Pham, DL
    Rettmann, ME
    Yu, DN
    Prince, JL
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (06) : 467 - 480
  • [7] Template-based surface reconstruction from cross-sections
    Holloway, Michelle
    Grimm, Cindy
    Ju, Tao
    COMPUTERS & GRAPHICS-UK, 2016, 58 : 84 - 91
  • [8] Template-Based Image Reconstruction from Sparse Tomographic Data
    Lukas F. Lang
    Sebastian Neumayer
    Ozan Öktem
    Carola-Bibiane Schönlieb
    Applied Mathematics & Optimization, 2020, 82 : 1081 - 1109
  • [9] Template-Based Image Reconstruction from Sparse Tomographic Data
    Lang, Lukas F.
    Neumayer, Sebastian
    Oktem, Ozan
    Schonlieb, Carola-Bibiane
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 82 (03): : 1081 - 1109
  • [10] A Template-Based 3D Reconstruction of Colon Structures and Textures From Stereo Colonoscopic Images
    Zhang, Shuai
    Zhao, Liang
    Huang, Shoudong
    Ye, Menglong
    Hao, Qi
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2021, 3 (01): : 85 - 95