Existence and Stability Analysis of Solution for Mathieu Fractional Differential Equations with Applications on Some Physical Phenomena

被引:13
作者
Tabouche, N. [1 ]
Berhail, A. [1 ]
Matar, M. M. [2 ]
Alzabut, J. [3 ]
Selvam, A. G. M. [4 ]
Vignesh, D. [4 ]
机构
[1] 08 May 1945 Univ Guelma, Dept Math, Guelma, Algeria
[2] Al Azhar Univ Gaza, Dept Math, Gaza, State Of Palest, Palestine
[3] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 11586, Saudi Arabia
[4] Sacred Heart Coll Autonomous, Dept Math, Tirupattur 635601, Tamil Nadu, India
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2021年 / 45卷 / 03期
关键词
Mathieu equations; Caputo fractional differential equation; HU stability; Schauder’ s fixed point theorem; Banach contraction principle; BOUNDARY-VALUE-PROBLEMS; UNIQUENESS; SYSTEM; CHAOS;
D O I
10.1007/s40995-021-01076-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper deals with a class of nonlinear Mathieu fractional differential equations. The reported results discuss the existence, uniqueness and stability for the solution of proposed equation. We prove the main results by the aid of fixed point theorems and Ulam's approach. The paper is appended with two applications that describe the force of periodic pendulum and the motion of a particle in the plane. Graphical representations are used to illustrate the results.
引用
收藏
页码:973 / 982
页数:10
相关论文
共 51 条
  • [1] Ahmad B, 2017, INT J ANAL APPL, V15, P86
  • [2] Chaos in fractional-order autonomous nonlinear systems
    Ahmad, WM
    Sprott, JC
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 16 (02) : 339 - 351
  • [3] ALI A, 2019, ADV DIFFER EQU-NY
  • [4] Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations
    Ali, Arshad
    Shah, Kamal
    Jarad, Fahd
    Gupta, Vidushi
    Abdeljawad, Thabet
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [5] [Anonymous], 2002, FRACTIONAL DYNAMICS
  • [6] Ulam-Hyers stability analysis to a class of nonlinear implicit impulsive fractional differential equations with three point boundary conditions
    Asma
    Ali, Arshad
    Shah, Kamal
    Jarad, Fahd
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [7] Atanackovic, 2014, B TCXLVI ACAD SERBE, P39
  • [8] Atanackovic T., 2013, Bull. Cl. Sci. Math. Nat. Sci. Math, V38, P27
  • [9] BERHAIL A, 2019, BOL SOC MAT MEX
  • [10] Berhail A, 2020, APPL MATH E-NOTES, V20, P55