Deep Learning for Biospectroscopy and Biospectral Imaging: State- of-the-Art and Perspectives

被引:85
作者
He, Hao [1 ]
Yan, Sen [2 ]
Lyu, Danya [2 ]
Xu, Mengxi [2 ]
Ye, Ruiqian [1 ]
Zheng, Peng [1 ]
Lu, Xinyu [2 ]
Wang, Lei [1 ]
Ren, Bin [2 ]
机构
[1] Xiamen Univ, Sch Aerosp Engn, Xiamen 361000, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat iChEM, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
基金
中国博士后科学基金;
关键词
SHEET FLUORESCENCE MICROSCOPY; RAMAN-SPECTROSCOPY; HIGH-THROUGHPUT; CLASSIFICATION; SEGMENTATION; IDENTIFICATION; RESOLUTION; NETWORKS; CANCER; IMAGES;
D O I
10.1021/acs.analchem.0c04671
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the advances in instrumentation and sampling techniques, there is an explosive growth of data from molecular and cellular samples. The call to extract more information from the large data sets has greatly challenged the conventional chemometrics method. Deep learning, which utilizes very large data sets for finding hidden features therein and for making accurate predictions for a wide range of applications, has been applied in an unbelievable pace in biospectroscopy and biospectral imaging in the recent 3 years. In this Feature, we first introduce the background and basic knowledge of deep learning. We then focus on the emerging applications of deep learning in the data preprocessing, feature detection, and modeling of the biological samples for spectral analysis and spectroscopic imaging. Finally, we highlight the challenges and limitations in deep learning and the outlook for future directions.
引用
收藏
页码:3653 / 3665
页数:13
相关论文
共 145 条
[51]   Globally optimal segmentation of cell nuclei in fluorescence microscopy images using shape and intensity information [J].
Kostrykin, L. ;
Schnoerr, C. ;
Rohr, K. .
MEDICAL IMAGE ANALYSIS, 2019, 58
[52]   The many facets of Raman spectroscopy for biomedical analysis [J].
Krafft, Christoph ;
Popp, Jurgen .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (03) :699-717
[53]   Hierarchical deep convolutional neural networks combine spectral and spatial information for highly accurate Raman-microscopy-based cytopathology [J].
Krauss, Sascha D. ;
Roy, Raphael ;
Yosef, Hesham K. ;
Lechtonen, Tatjana ;
El-Mashtoly, Samir F. ;
Gerwert, Klaus ;
Mosig, Axel .
JOURNAL OF BIOPHOTONICS, 2018, 11 (10)
[54]   Integrating spatial, morphological, and textural information for improved cell type differentiation using Raman microscopy [J].
Krauss, Sascha D. ;
Yosef, Hesham K. ;
Lechtonen, Tatjana ;
Juette, Hendrik ;
Tannapfel, Andrea ;
Kaefferlein, Heiko U. ;
Bruening, Thomas ;
Roghmann, Florian ;
Noldus, Joachim ;
El-Mashtoly, Samir F. ;
Gerwert, Klaus ;
Mosig, Axel .
JOURNAL OF CHEMOMETRICS, 2018, 32 (01)
[55]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[56]   Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks [J].
Ksiazek, Kamil ;
Romaszewski, Michal ;
Glomb, Przemyslaw ;
Grabowski, Bartosz ;
Cholewa, Michal .
SENSORS, 2020, 20 (22) :1-24
[57]   Human-level concept learning through probabilistic program induction [J].
Lake, Brenden M. ;
Salakhutdinov, Ruslan ;
Tenenbaum, Joshua B. .
SCIENCE, 2015, 350 (6266) :1332-1338
[58]   FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria [J].
Lasch, Peter ;
Staemmler, Maren ;
Zhang, Miao ;
Baranska, Malgorzata ;
Bosch, Alejandra ;
Majzner, Katarzyna .
ANALYTICAL CHEMISTRY, 2018, 90 (15) :8896-8904
[59]   Backpropagation Applied to Handwritten Zip Code Recognition [J].
LeCun, Y. ;
Boser, B. ;
Denker, J. S. ;
Henderson, D. ;
Howard, R. E. ;
Hubbard, W. ;
Jackel, L. D. .
NEURAL COMPUTATION, 1989, 1 (04) :541-551
[60]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324