Existence and decay results for a von Karman equation with variable exponent nonlinearities

被引:4
作者
Ha, Tae Gab [1 ,2 ]
Park, Sun-Hye [3 ]
机构
[1] Jeonbuk Natl Univ, Dept Math, Jeonju, South Korea
[2] Jeonbuk Natl Univ, Inst Pure & Appl Math, Jeonju, South Korea
[3] Pusan Natl Univ, Off Educ Accreditat, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
existence of solution; stability; variable exponent; von Karman equation;
D O I
10.1002/mma.7372
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider a von Karman equation with variable exponent nonlinearities w(tt)(x, t) + Delta(2)w(x, t) + vertical bar w(t)(x, t)vertical bar gamma((x)-2)w(t)(x, t) = [w(x, t), F(w(x, t))] + vertical bar w(x, t)vertical bar(p(x)-2)w(x, t) in a bounded domain Omega subset of R-2. We firstly discuss an existence result of solutions by utilizing Faedo-Galerkin approximation technique. Then, we undertake an investigation of asymptotic stability to the solutions by making use of the multiplier method.
引用
收藏
页码:9475 / 9486
页数:12
相关论文
共 28 条
[1]   New diffusion models in image processing [J].
Aboulaich, R. ;
Meskine, D. ;
Souissi, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :874-882
[2]  
Adams RA., 2003, Sobolev Space, V2
[3]  
[Anonymous], 2015, ATLANTIS STUDIES DIF
[4]   WAVE EQUATION WITH p(x,t)-LAPLACIAN AND DAMPING TERM: EXISTENCE AND BLOW-UP [J].
Antontsev, Stanislav .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (04) :503-525
[5]   GLOBAL DECAY-RATES FOR THE SOLUTIONS TO A VONKARMAN PLATE WITHOUT GEOMETRIC CONDITIONS [J].
BRADLEY, ME ;
LASIECKA, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 181 (01) :254-276
[6]   Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Martinez, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (01) :119-158
[7]  
Chueshov I, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87712-9
[8]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[9]   Sobolev embeddings with variable exponent [J].
Edmunds, DE ;
Rákosník, J .
STUDIA MATHEMATICA, 2000, 143 (03) :267-293
[10]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446