Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures

被引:56
作者
Francis, Michael P. [1 ,2 ]
Breathwaite, Erick [1 ]
Bulysheva, Anna A. [3 ]
Varghese, Frency [3 ,4 ]
Rodriguez, Rudy U. [1 ]
Dutta, Sucharita [2 ]
Semenov, Iurii [3 ]
Ogle, Rebecca [1 ]
Huber, Alexander [1 ]
Tichy, Alexandra-Madelaine [5 ]
Chen, Silvia [1 ]
Zemlin, Christian [3 ,4 ]
机构
[1] LifeNet Hlth Inst Regenerat Med, Virginia Beach, VA USA
[2] Eastern Virginia Med Sch, Norfolk, VA 23501 USA
[3] Old Dominion Univ, Frank Reidy Res Ctr Bioelect, Norfolk, VA USA
[4] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA USA
[5] FH Campus Wien, Appl Life Sci, Vienna, Austria
关键词
Placenta; Extracellular matrix; Ischemia; Cardiomyocyte culture; Hydrogel; Decellularized; AMNIOTIC MEMBRANE; EXPRESSION; DELIVERY; CORNEAL;
D O I
10.1016/j.actbio.2016.12.027
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Introduction: Xenogeneic extracellular matrix (ECM) hydrogels have shown promise in remediating cardiac ischemia damage in animal models, yet analogous human ECM hydrogels have not been well development. An original human placenta-derived hydrogel (hpECM) preparation was thus generated for assessment in cardiomyocyte cell culture and therapeutic cardiac injection applications. Methods and results: Hybrid orbitrap-quadrupole mass spectrometry and ELISAs showed hpECM to be rich in collagens, basement membrane proteins, and regenerative growth factors (e.g. VEGF-B, HGF). Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes synchronized and electrically coupled on hpECM faster than on conventional cell culture environments, as validated by intracellular calcium measurements. In vivo, injections using biotin-labeled hpECM confirmed its spatially discrete localization to the myocardium proximal to the injection site. hpECM was injected into rat myocardium following an acute myocardium infarction induced by left anterior descending artery ligation. Compared to sham treated animals, which exhibited aberrant electrical activity and larger myocardial scars, hpECM injected rat hearts showed a significant reduction in scar volume along with normal electrical activity of the surviving tissue, as determined by optical mapping. Conclusion: Placental matrix and growth factors can be extracted as a hydrogel that effectively supports cardiomyocytes in vitro, and in vivo reduces scar formation while maintaining electrophysiological activity when injected into ischemic myocardium. Statement of Significance This is the first report of an original extracellular matrix hydrogel preparation isolated from human placentas (hpECM). hpECM is rich in collagens, laminin, fibronectin, glycoproteins, and growth factors, including known pro-regenerative, pro-angiogenic, anti-scarring, anti-inflammatory, and stem cell recruiting factors. hpECM supports the culture of cardiomyocytes, stem cells and blood vessels assembly from endothelial cells. In a rat model of myocardial infarction, hpECM injections were safely deliverable to the ischemic myocardium. hpECM injections repaired the myocardium, resulting in a significant reduction in infarct size, more viable myocardium, and a normal electrophysiological contraction profile. hpECM thus has potential in therapeutic cardiovascular applications, in cellular therapies (as a delivery vehicle), and is a promising biomaterial for advancing basic cell-based research and regenerative medicine applications. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:92 / 104
页数:13
相关论文
共 38 条
[31]   Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction [J].
Sonnenberg, Sonya B. ;
Rane, Aboli A. ;
Liu, Cassie J. ;
Rao, Nikhil ;
Agmon, Gillie ;
Suarez, Sophia ;
Wang, Raymond ;
Munoz, Adam ;
Bajaj, Vaibhav ;
Zhang, Shirley ;
Braden, Rebecca ;
Schup-Magoffin, Pamela J. ;
Kwan, Oi Ling ;
De Maria, Anthony N. ;
Cochran, Jennifer R. ;
Christman, Karen L. .
BIOMATERIALS, 2015, 45 :56-63
[32]   ANTIBACTERIAL PROPERTIES OF HUMAN AMNIOTIC MEMBRANES [J].
TALMI, YP ;
SIGLER, L ;
INGE, E ;
FINKELSTEIN, Y ;
ZOHAR, Y .
PLACENTA, 1991, 12 (03) :285-288
[33]  
Tseng SCG, 1999, J CELL PHYSIOL, V179, P325, DOI 10.1002/(SICI)1097-4652(199906)179:3<325::AID-JCP10>3.0.CO
[34]  
2-X
[35]   Stem cells in the management of heart failure: what have we learned from clinical trials? [J].
Vogel, Rebecca ;
Hussein, Emad A. ;
Mousa, Shaker A. .
EXPERT REVIEW OF CARDIOVASCULAR THERAPY, 2015, 13 (01) :75-83
[36]   The effect of Gal expression on pig cells on the human T-cell xenoresponse [J].
Wilhite, Tyler ;
Ezzelarab, Corin ;
Hara, Hidetaka ;
Long, Cassandra ;
Ayares, David ;
Cooper, David K. C. ;
Ezzelarab, Mohamed .
XENOTRANSPLANTATION, 2012, 19 (01) :56-63
[37]   PATHOPHYSIOLOGIC MECHANISMS OF CARDIAC-ARRHYTHMIAS [J].
WIT, AL ;
ROSEN, MR .
AMERICAN HEART JOURNAL, 1983, 106 (04) :798-811
[38]   Dysregulated expression of cell surface glycoprotein CDCP1 in prostate cancer [J].
Yang, Lifang ;
Dutta, Sucharita M. ;
Troyer, Dean A. ;
Lin, Jefferson B. ;
Lance, Raymond A. ;
Nyalwidhe, Julius O. ;
Drake, Richard R. ;
Semmes, O. John .
ONCOTARGET, 2015, 6 (41) :43743-43758