A monotone data augmentation algorithm for longitudinal data analysis via multivariate skew-t, skew-normal or t distributions

被引:1
|
作者
Tang, Yongqiang [1 ]
机构
[1] Tesaro, Dept Biometr, 1000 Winter St, Waltham, MA 02451 USA
关键词
Block sampling; controlled imputations; mixed effects model for repeated measures; monotone data augmentation; penalized complexity prior; tipping point analysis; LINEAR MIXED MODELS; OBJECTIVE BAYESIAN-ANALYSIS; PATTERN-MIXTURE-MODELS; MULTIPLE IMPUTATION; MISSING DATA; COVARIANCE STRUCTURE; SENSITIVITY-ANALYSIS; MONTE-CARLO; INFERENCE; VARIANCE;
D O I
10.1177/0962280219865579
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The mixed effects model for repeated measures has been widely used for the analysis of longitudinal clinical data collected at a number of fixed time points. We propose a robust extension of the mixed effects model for repeated measures for skewed and heavy-tailed data on basis of the multivariate skew-t distribution, and it includes the multivariate normal, t, and skew-normal distributions as special cases. An efficient Markov chain Monte Carlo algorithm is developed using the monotone data augmentation and parameter expansion techniques. We employ the algorithm to perform controlled pattern imputations for sensitivity analyses of longitudinal clinical trials with nonignorable dropouts. The proposed methods are illustrated by real data analyses. Sample SAS programs for the analyses are provided in the online supplementary material.
引用
收藏
页码:1542 / 1562
页数:21
相关论文
共 50 条
  • [41] Outlier detection for multivariate skew-normal data: a comparative study
    Dovoedo, Y. H.
    Chakraborti, S.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (04) : 771 - 781
  • [42] Multivariate skew-normal distribution for modelling skewed spatial data
    Ayalew, Kassahun Abere
    Manda, Samuel
    Cai, Bo
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2024, 51
  • [43] Scale mixtures of multivariate centered skew-normal distributions
    de Freitas, Joao Victor B.
    Bondon, Pascal
    Azevedo, Caio L. N.
    Reisen, Valderio A.
    Nobre, Juvencio S.
    STATISTICS AND COMPUTING, 2024, 34 (06)
  • [44] Finite mixture of semiparametric multivariate skew-normal distributions
    Lee, Hyunjae
    Seo, Byungtae
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (11) : 5659 - 5679
  • [45] Multivariate skew-normal distributions with applications in insurance.
    Raluca, V
    INSURANCE MATHEMATICS & ECONOMICS, 2005, 37 (02): : 376 - 376
  • [46] Efficient recursive computational algorithms for multivariate t and multivariate unified skew-t distributions with applications to inference
    Amiri, Mehdi
    Mehrali, Yaser
    Balakrishnan, Narayanaswamy
    Jamalizadeh, Ahad
    COMPUTATIONAL STATISTICS, 2022, 37 (01) : 125 - 158
  • [47] Efficient recursive computational algorithms for multivariate t and multivariate unified skew-t distributions with applications to inference
    Mehdi Amiri
    Yaser Mehrali
    Narayanaswamy Balakrishnan
    Ahad Jamalizadeh
    Computational Statistics, 2022, 37 : 125 - 158
  • [48] Robust skew-t factor analysis models for handling missing data
    Wan-Lun Wang
    Min Liu
    Tsung-I Lin
    Statistical Methods & Applications, 2017, 26 : 649 - 672
  • [49] A skew-t quantile regression for censored and missing data
    Galarza Morales, Christian E.
    Lachos, Victor H.
    Bourguignon, Marcelo
    STAT, 2021, 10 (01):
  • [50] Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions
    Wang, Sheng
    Zimmerman, Dale L.
    Breheny, Patrick
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 179