Temporal Convolutional Memory Networks for Remaining Useful Life Estimation of Industrial Machinery

被引:42
作者
Jayasinghe, Lahiru [1 ]
Samarasinghe, Tharaka [2 ,3 ]
Yuen, Chau [1 ]
Low, Jenny Chen Ni [4 ]
Ge, Shuzhi Sam [5 ]
机构
[1] Singapore Univ Technol & Design, SUTD MIT Int Design Ctr, Singapore, Singapore
[2] Univ Moratuwa, Dept Elect & Telecommun Engn, Moratuwa, Sri Lanka
[3] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic, Australia
[4] Keysight Technol, Singapore, Singapore
[5] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
来源
2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT) | 2019年
关键词
deep learning; convolutional neural networks; long short-term memory; remaining useful life estimation; PROGNOSTICS;
D O I
10.1109/ICIT.2019.8754956
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurately estimating the remaining useful life (RUL) of industrial machinery is beneficial in many real-world applications. Estimation techniques have mainly utilized linear models or neural network based approaches with a focus on short term time dependencies. This paper, introduces a system model that incorporates temporal convolutions with both long term and short term time dependencies. The proposed network learns salient features and complex temporal variations in sensor values, and predicts the RUL. A data augmentation method is used for increased accuracy. The proposed method is compared with several state-of-the-art algorithms on publicly available datasets. It demonstrates promising results, with superior results for datasets obtained from complex environments.
引用
收藏
页码:915 / 920
页数:6
相关论文
共 50 条
[1]   A piecewise method for bearing remaining useful life estimation using temporal convolutional networks [J].
Qiu, Haobo ;
Niu, Yingchun ;
Shang, Jie ;
Gao, Liang ;
Xu, Danyang .
JOURNAL OF MANUFACTURING SYSTEMS, 2023, 68 :227-241
[2]   Multipath Temporal Convolutional Network for Remaining Useful Life Estimation [J].
Melendez-Vazquez, Ivan ;
Doelling, Rolando ;
Bringmann, Oliver .
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, :4137-4146
[3]   Empirical Mode Decomposition and Temporal Convolutional Networks for Remaining Useful Life Estimation [J].
Wensi Yang ;
Qingfeng Yao ;
Kejiang Ye ;
Cheng-Zhong Xu .
International Journal of Parallel Programming, 2020, 48 :61-79
[4]   Empirical Mode Decomposition and Temporal Convolutional Networks for Remaining Useful Life Estimation [J].
Yang, Wensi ;
Yao, Qingfeng ;
Ye, Kejiang ;
Xu, Cheng-Zhong .
INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2020, 48 (01) :61-79
[5]   Remaining Useful Life Prediction of Machinery: A New Multiscale Temporal Convolutional Network Framework [J].
Deng, Feiyue ;
Bi, Yan ;
Liu, Yongqiang ;
Yang, Shaopu .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
[6]   Temporal convolutional attention network for remaining useful life estimation [J].
Liu L. ;
Pei X. ;
Lei X. .
Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (08) :2375-2386
[7]   Remaining useful life estimation of bearing via temporal convolutional networks enhanced by a gated convolutional unit [J].
Qin, Yujie ;
Gan, Fanfan ;
Xia, Baizhan ;
Mi, Dong ;
Zhang, Lizhang .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
[8]   Deep separable convolutional network for remaining useful life prediction of machinery [J].
Wang, Biao ;
Lei, Yaguo ;
Li, Naipeng ;
Yan, Tao .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 134
[9]   Temporal Convolutional Network Based Regression Approach for Estimation of Remaining Useful Life [J].
Li, Rongze ;
Chu, Zhengtian ;
Jin, Wangkai ;
Wang, Yaohua ;
Hu, Xiao .
2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
[10]   Convolutional and long short-time memory network configuration to predict the remaining useful life of rotating machinery [J].
Sarabando, Helcio Ferreira ;
Nobrega, Euripedes Guilherme de Oliveira .
IEEE LATIN AMERICA TRANSACTIONS, 2024, 22 (12) :1034-1041