Robust low-rank tensor completion via transformed tensor nuclear norm with total variation regularization
被引:59
作者:
Qiu, Duo
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Sch Math, Changsha 410082, Peoples R ChinaHunan Univ, Sch Math, Changsha 410082, Peoples R China
Qiu, Duo
[1
]
Bai, Minru
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Sch Math, Changsha 410082, Peoples R ChinaHunan Univ, Sch Math, Changsha 410082, Peoples R China
Bai, Minru
[1
]
Ng, Michael K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Math, Pokfulam, Hong Kong, Peoples R ChinaHunan Univ, Sch Math, Changsha 410082, Peoples R China
Ng, Michael K.
[2
]
Zhang, Xiongjun
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R ChinaHunan Univ, Sch Math, Changsha 410082, Peoples R China
Zhang, Xiongjun
[3
,4
]
机构:
[1] Hunan Univ, Sch Math, Changsha 410082, Peoples R China
[2] Univ Hong Kong, Dept Math, Pokfulam, Hong Kong, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[4] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
Robust low-rank tensor completion plays an important role in multidimensional data analysis against different degradations, such as Gaussian noise, sparse noise, and missing entries, and has a variety of applications in image processing and computer vision. In this paper, we investigate the problem of low-rank tensor completion with different degradations for third-order tensors, and propose a transformed tensor nuclear norm method combined the tensor l(1) norm with total variational (TV) regularization. Our model is based on a recently proposed algebraic framework in which the transformed tensor nuclear norm is introduced to capture lower transformed multi-rank by using suitable unitary transformations. We adopt the tensor l(1) norm to detect the sparse noise, and the TV regularization to preserve the piecewise smooth structure along the spatial and tubal dimensions. Moreover, a symmetric Gauss-Seidel based alternating direction method of multipliers is developed to solve the resulting model and its global convergence is established under very mild conditions. Extensive numerical examples on both hyperspectral images and video datasets are carried out to demonstrate the superiority of the proposed model compared with several existing state-of-the-art methods. (C) 2021 Elsevier B.V. All rights reserved.
机构:
Univ Paris Ouest, CREST, F-92001 Nanterre, France
Univ Paris Ouest, MODALX, F-92001 Nanterre, FranceUniv Paris Ouest, CREST, F-92001 Nanterre, France
Klopp, Olga
;
Lounici, Karim
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USAUniv Paris Ouest, CREST, F-92001 Nanterre, France
Lounici, Karim
;
Tsybakov, Alexandre B.
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, CREST ENSAE, UMR 9194, 3 Av Pierre Larousse, F-92240 Malakoff, FranceUniv Paris Ouest, CREST, F-92001 Nanterre, France
机构:
Univ Paris Ouest, CREST, F-92001 Nanterre, France
Univ Paris Ouest, MODALX, F-92001 Nanterre, FranceUniv Paris Ouest, CREST, F-92001 Nanterre, France
Klopp, Olga
;
Lounici, Karim
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USAUniv Paris Ouest, CREST, F-92001 Nanterre, France
Lounici, Karim
;
Tsybakov, Alexandre B.
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, CREST ENSAE, UMR 9194, 3 Av Pierre Larousse, F-92240 Malakoff, FranceUniv Paris Ouest, CREST, F-92001 Nanterre, France