Carbon Tetragons as Definitive Spin Switches in Narrow Zigzag Graphene Nanoribbons

被引:62
作者
Cui, Ping [1 ,2 ]
Zhang, Qiang [1 ,2 ,3 ,4 ]
Zhu, Hongbin [1 ,2 ,3 ,4 ]
Li, Xiaoxia [1 ,2 ,3 ,4 ]
Wang, Weiyi [1 ,2 ]
Li, Qunxiang [1 ,2 ]
Zeng, Changgan [1 ,2 ,3 ,4 ]
Zhang, Zhenyu [1 ,2 ]
机构
[1] Univ Sci & Technol China, Int Ctr Quantum Design Funct Mat ICQD, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
DIRAC FERMIONS; RECONSTRUCTION; PREDICTION; AU(110); DEVICE; ORDER; STATE; EDGE;
D O I
10.1103/PhysRevLett.116.026802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Precise spatial control of the spin propagation channels is of fundamental and practical importance in future graphene-based spintronic devices. Here we use first-principles calculations to show that when narrow zigzag graphene nanoribbons are connected to form junctions or superlattices, properly placed square-shaped carbon tetragons not only serve as effective bundles of the two incoming spin edge channels, but also act as definitive topological spin switches for the two outgoing channels. The nanoribbon segments are largely drawn from different acene molecules. We further show that such spin switches can lift the degeneracy between the two spin propagation channels, which enables tunability of different magnetic states upon charge doping. Preliminary experimental supports for the realization of such tetragons connecting nanoribbon segments are also presented.
引用
收藏
页数:5
相关论文
共 46 条
[1]   Oligoacenes: Theoretical prediction of open-shell singlet diradical ground states [J].
Bendikov, M ;
Duong, HM ;
Starkey, K ;
Houk, KN ;
Carter, EA ;
Wudl, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (24) :7416-7417
[2]  
Blchl P. E., 1994, PHYS REV B, VB50, P17953, DOI DOI 10.1103/PHYSREVB.50.17953
[3]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[4]   Diluted graphene antiferromagnet [J].
Brey, L. ;
Fertig, H. A. ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2007, 99 (11)
[5]   Improved All-Carbon Spintronic Device Design [J].
Bullard, Zachary ;
Girao, Eduardo Costa ;
Owens, Jonathan R. ;
Shelton, William A. ;
Meunier, Vincent .
SCIENTIFIC REPORTS, 2015, 5
[6]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[7]   Magnetic properties of polymerized C60:: The influence of defects and hydrogen -: art. no. 041403 [J].
Chan, JA ;
Montanari, B ;
Gale, JD ;
Bennington, SM ;
Taylor, JW ;
Harrison, NM .
PHYSICAL REVIEW B, 2004, 70 (04) :041403-1
[8]   Spin-transport selectivity upon Co adsorption on antiferromagnetic graphene nanoribbons [J].
Cocchi, Caterina ;
Prezzi, Deborah ;
Calzolari, Arrigo ;
Molinari, Elisa .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (12)
[9]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923
[10]   Quantum Nature of Edge Magnetism in Graphene [J].
Golor, Michael ;
Wessel, Stefan ;
Schmidt, Manuel J. .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)