The signaling mechanism of ROS in tumor progression

被引:653
作者
Wu, Wen-Sheng [1 ]
机构
[1] Tzu Chi Univ, Dept Med Technol, Hualien 970, Taiwan
关键词
reactive oxygen species; cell migration; tumor progression; TGF beta; PKC; MAPK;
D O I
10.1007/s10555-006-9037-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Reactive oxygen species (ROS) are recently proposed to be involved in tumor metastasis which is a complicated processes including epithelial-mesenchymal transition (EMT), migration, invasion of the tumor cells and angiogenesis around the tumor lesion. ROS generation may be induced intracellularly, in either NADPH oxidase- or mitochondria-dependent manner, by growth factors and cytokines (such as TGF beta and HGF) and tumor promoters (such as TPA) capable of triggering cell adhesion, EMT and migration. As a signaling messenger, ROS are able to oxidize the critical target molecules such as PKC and protein tyrosine phosphates (PTPs), which are relevant to tumor cell invasion. PKC contain multiple cysteine residues that can be oxidized and activated by ROS. Inactivation of multiple PTPs by ROS may relieve the tyrosine phosphorylation-dependent signaling. Two of the down-stream molecules regulated by ROS are MAPK and PAK. MAPKs cascades were established to be a major signal pathway for driving tumor cell metastasis, which are mediated by PKC, TGF-beta/Smad and integrin-mediated signaling. PAK is an effector of Rac-mediated cytoskeletal remodeling that is responsible for cell migration and angiogenesis. There are several transcriptional factors such as AP1, Ets, Smad and Snail regulating a lot of genes relevant to metastasis. AP-1 and Smad can be activated by PKC activator and TGF-beta1, respectively, in a ROS dependent manner. On the other hand, Est-1 can be upregulated by H2O2 via an antioxidant response element in the promoter. The ROS-regulated genes relevant to EMT and metastasis include E-cahedrin, integrin and MMP. Comprehensive understanding of the ROS-triggered signaling transduction, transcriptional activation and regulation of gene expressions will help strengthen the critical role of ROS in tumor progression and devising strategy for chemo-therapeutic interventions.
引用
收藏
页码:695 / 705
页数:11
相关论文
共 159 条
[1]   TGF-β signaling in cancer -: a double-edged sword [J].
Akhurst, RJ ;
Derynck, R .
TRENDS IN CELL BIOLOGY, 2001, 11 (11) :S44-S51
[2]   Oxidants and Antioxidants in Breast Cancer [J].
Ambrosone, Christine B. .
ANTIOXIDANTS & REDOX SIGNALING, 2000, 2 (04) :903-918
[3]  
Aprikian AG, 1997, INT J CANCER, V72, P498, DOI 10.1002/(SICI)1097-0215(19970729)72:3<498::AID-IJC19>3.3.CO
[4]  
2-P
[5]   Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor scatter factor [J].
Arakaki, N ;
Kajihara, T ;
Arakaki, R ;
Ohnishi, T ;
Kazi, JA ;
Nakashima, H ;
Daikuhara, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (19) :13541-13546
[6]   Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1 [J].
Arnold, RS ;
Shi, J ;
Murad, E ;
Whalen, AM ;
Sun, CQ ;
Polavarapu, R ;
Parthasarathy, S ;
Petros, JA ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (10) :5550-5555
[7]   Oxidants in receptor tyrosine kinase signal transduction pathways [J].
Aslan, M ;
Özben, T .
ANTIOXIDANTS & REDOX SIGNALING, 2003, 5 (06) :781-788
[8]   The Snail genes as inducers of cell movement and survival: implications in development and cancer [J].
Barrallo-Gimeno, A ;
Nieto, MA .
DEVELOPMENT, 2005, 132 (14) :3151-3161
[9]   Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta [J].
Berra, E ;
DiazMeco, MT ;
Lozano, J ;
Frutos, S ;
Municio, MM ;
Sanchez, P ;
Sanz, L ;
Moscat, J .
EMBO JOURNAL, 1995, 14 (24) :6157-6163
[10]   Axis of evil: molecular mechanisms of cancer metastasis [J].
Bogenrieder, T ;
Herlyn, M .
ONCOGENE, 2003, 22 (42) :6524-6536