Platinum nano sized particles (Pt NPs) are superior catalysts for many intentions, such as glucose sensors, cancer therapy, gas sensors, etc. Here, Pt NPs were produced by pulsed laser ablation in C2H6O2 solution using Q-switched Nd:YAG laser, for the first time. Then, the influence of the laser fluence during synthesis of them was investigated; and they were characterized by UV-vis spectroscopy, TEM, FE-SEM, XRD, FT-IR, and Raman spectroscopy. The results showed that with increasing laser fluence, the mean particle size of the spherical NPs enhanced. Meanwhile, they had a polycrystalline cubic structure. Correspondingly, the plasmon peak position of generated NPs in the absorption spectra shifted from 257 to 266 nm, with a rise of laser fluence. The IR and Raman spectroscopy was used to achieve the information about the surface state of Pt NPs. We propose that the optimum adjusted laser fluence is an important factor to increase the ablation efficiency.