Existence of periodic solutions for fully nonlinear first-order differential equations

被引:4
作者
Li, DS [1 ]
Liang, YT
机构
[1] Yantai Univ, Dept Math & Informat, Shandong 264005, Peoples R China
[2] Lanzhou Teachers Coll, Dept Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
existence; periodic solution; fully nonlinear; differential equation; viscosity solutions method;
D O I
10.1016/S0362-546X(02)00153-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some existence results for periodic solutions of fully nonlinear first-order scalar differential equation: F(t,x,x') = 0. The approach here uses the viscosity solutions method developed in recent decades and the classical upper-lower solutions method. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1095 / 1109
页数:15
相关论文
共 34 条
[1]   Existence of closed solutions of an equation x=f(t,x), where fx′(t,x) is weakly convex or concave in x [J].
Andersen, KM ;
Sandqvist, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (02) :480-500
[2]  
[Anonymous], 1964, NONLINEAR DIFFERENTI
[3]  
[Anonymous], 2000, NONLINEAR DIFFERENTI
[4]  
[Anonymous], DYNAM SYSTEMS APPL
[5]  
[Anonymous], 1985, REND CIRC MAT PALERM
[6]   On discontinuous first order implicit boundary value problems [J].
Carl, S ;
Heikkila, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :100-121
[7]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[8]   BOUNDARY-VALUE-PROBLEMS FOR SYSTEMS OF IMPLICIT DIFFERENTIAL-EQUATIONS [J].
FRIGON, M ;
KACZYNSKI, T .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (02) :317-326
[9]   CONTINUOUS DEPENDENCE FOR AN IMPLICIT NONLINEAR EQUATION [J].
HOKKANEN, VM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 110 (01) :67-85
[10]  
HOKKANEN VM, 1996, DIFFERENTIAL INTEGRA, V9, P745