Parameter Tuning of MLP Neural Network Using Genetic Algorithms

被引:0
作者
Er, Meng Joo [1 ]
Liu, Fan [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009) | 2009年 / 56卷
关键词
Genetic algorithms; Backpropagation; Function approximation; Nonlinear dynamic system identification; BUSINESS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a hybrid learning algorithm for a Multilayer Percept-rons (MLP) Neural Network using Genetic Algorithms (GA) is proposed. This hybrid learning algorithm has two steps: First, all the parameters (weights and biases) of the initial neural network are encoded to form a long chromosome and tuned by the GA. Second, as a result of the GA process, a quasi-Newton method called BFGS method is applied to train the neural network. Simulation studies on function approximation and nonlinear dynamic system identification are presented to illustrate the performance of the proposed learning algorithm.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 50 条
  • [41] Computerized recognition of Alzheimer disease-EEG using genetic algorithms and neural network
    Kim, HT
    Kim, BY
    Park, EH
    Kim, JW
    Hwang, EW
    Han, SK
    Cho, SY
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2005, 21 (07): : 1124 - 1130
  • [42] Parameter Identification of Damage Models Using Genetic Algorithms
    P. A. Muñoz-Rojas
    E. L. Cardoso
    M. Vaz
    Experimental Mechanics, 2010, 50 : 627 - 634
  • [43] Parameter Identification of Damage Models Using Genetic Algorithms
    Munoz-Rojas, P. A.
    Cardoso, E. L.
    Vaz, M., Jr.
    EXPERIMENTAL MECHANICS, 2010, 50 (05) : 627 - 634
  • [44] Solar cell parameter extraction using genetic algorithms
    Jervase, JA
    Bourdoucen, H
    Al-Lawati, A
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2001, 12 (11) : 1922 - 1925
  • [45] Semiconductor parameter extraction using cathodoluminescence and genetic algorithms
    Soualmia, S.
    Bouldjedri, A.
    Benhaya, A.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2011, 14 (01) : 62 - 68
  • [46] Recognizing Odor Mixtures Using Optimized Fuzzy Neural Network Through Genetic Algorithms
    Kusumoputro, Benyamin
    Arsyad, Teguh P.
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2005, 9 (03) : 290 - 296
  • [47] Clustering and selection using grouping genetic algorithms for blockmodeling to construct neural network ensembles
    da Rocha e Silva, Evandro Jose
    Almeida, Leandro Maciel
    Ludermir, Teresa B.
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 420 - 425
  • [48] Evolutionary design of MLP neural network architectures
    Filho, EFM
    de Carvalho, ACPDF
    IVTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, PROCEEDINGS, 1997, : 58 - 65
  • [49] Self-tuning fuzzy controller design using genetic optimisation and neural network modelling
    Pham, DT
    Karaboga, D
    ARTIFICIAL INTELLIGENCE IN ENGINEERING, 1999, 13 (02): : 119 - 130
  • [50] Segmentation of MR and CT images using a hybrid neural network trained by genetic algorithms
    Dokur, Z
    NEURAL PROCESSING LETTERS, 2002, 16 (03) : 211 - 225