Parameter Tuning of MLP Neural Network Using Genetic Algorithms

被引:0
作者
Er, Meng Joo [1 ]
Liu, Fan [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009) | 2009年 / 56卷
关键词
Genetic algorithms; Backpropagation; Function approximation; Nonlinear dynamic system identification; BUSINESS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a hybrid learning algorithm for a Multilayer Percept-rons (MLP) Neural Network using Genetic Algorithms (GA) is proposed. This hybrid learning algorithm has two steps: First, all the parameters (weights and biases) of the initial neural network are encoded to form a long chromosome and tuned by the GA. Second, as a result of the GA process, a quasi-Newton method called BFGS method is applied to train the neural network. Simulation studies on function approximation and nonlinear dynamic system identification are presented to illustrate the performance of the proposed learning algorithm.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 50 条
  • [1] Genetic Algorithms for MLP Neural Network Parameters Optimization
    Er, Meng Joo
    Liu, Fan
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3653 - 3658
  • [2] GA-TSKfnn: Parameters tuning of fuzzy neural network using genetic algorithms
    Tang, AM
    Quek, C
    Ng, GS
    EXPERT SYSTEMS WITH APPLICATIONS, 2005, 29 (04) : 769 - 781
  • [3] Distributed Parameter Tuning for Genetic Algorithms
    Barrero, David F.
    Gonzalez-Pardo, Antonio
    Camacho, David
    R-Moreno, Maria D.
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2010, 7 (03) : 661 - 677
  • [4] Neural network crossover in genetic algorithms using genetic programming
    Pretorius, Kyle
    Pillay, Nelishia
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2024, 25 (01)
  • [5] Tuning the structure and parameters of a neural network by a new network model based on genetic algorithms
    Li, Xiangmei
    International Journal of Digital Content Technology and its Applications, 2012, 6 (11) : 29 - 36
  • [6] Optimal tuning of PI speed controller coefficients for electric drives using neural network and genetic algorithms
    Seydi Vakkas Ustun
    Metin Demirtas
    Electrical Engineering, 2005, 87 : 77 - 82
  • [7] Optimal tuning of PI speed controller coefficients for electric drives using neural network and genetic algorithms
    Ustun, SV
    Demirtas, M
    ELECTRICAL ENGINEERING, 2005, 87 (02) : 77 - 82
  • [8] A PARAMETER TUNING FOR DYNAMIC SIMULATION OF POWER-PLANTS USING GENETIC ALGORITHMS
    MIYAMOTO, Y
    MIYATAKE, T
    KUROSAKA, S
    MORI, Y
    ELECTRICAL ENGINEERING IN JAPAN, 1995, 115 (01) : 104 - 115
  • [9] Application of Genetic Algorithms for Strejc Model Parameter Tuning
    Ostaszewicz, Dawid
    Rogowski, Krzysztof
    ELECTRONICS, 2024, 13 (18)
  • [10] Neural network optimization using genetic algorithms for speech recognition
    Mouria-Beji, F
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2002, 10 (02): : 69 - 74