Spirals vortices in Taylor-Couette flow with rotating endwalls

被引:8
作者
Heise, M. [1 ]
Hochstrate, K. [1 ]
Abshagen, J. [1 ]
Pfister, G. [1 ]
机构
[1] Univ Kiel, Inst Expt & Appl Phys, D-24098 Kiel, Germany
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
关键词
bifurcation; Couette flow; defect states; rotational flow; vortices; STABILITY;
D O I
10.1103/PhysRevE.80.045301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A Hopf bifurcation with translational invariance has been widely considered as an appropriate model for the appearance of spiral vortices in counter-rotating Taylor-Couette flow. Our experimental work demonstrates that flow conditions close to the axial boundaries are responsible for the type of bifurcation scenario, i.e., either asymmetric pure traveling waves or more complex behavior, such as defect states or symmetric mixed states appearing from a Hopf bifurcation. The measurements were performed in the first Taylor-Couette experiment with independently rotating endwalls confining the system in axial direction. The rotation rate of the (synchronous) endwalls is found to be an essential control parameter for the spatial amplitude distribution of the traveling waves and also reflects symmetry of the corresponding flow pattern appearing from the Hopf bifurcation.
引用
收藏
页数:4
相关论文
共 20 条
[1]   Imperfect Hopf bifurcation in spiral Poiseuille flow [J].
Abshagen, J. ;
Heise, M. ;
Langenberg, J. ;
Pfister, G. .
PHYSICAL REVIEW E, 2007, 75 (01)
[2]   FLOW REGIMES IN A CIRCULAR COUETTE SYSTEM WITH INDEPENDENTLY ROTATING CYLINDERS [J].
ANDERECK, CD ;
LIU, SS ;
SWINNEY, HL .
JOURNAL OF FLUID MECHANICS, 1986, 164 :155-183
[3]  
CHOSSAT P, 1994, COUETTETAYLOR PROBLE
[4]   TRANSITION IN CIRCULAR COUETTE FLOW [J].
COLES, D .
JOURNAL OF FLUID MECHANICS, 1965, 21 :385-&
[5]   On degenerate Hopf bifurcation with broken O(2) symmetry [J].
Crawford, John David ;
Knobloch, Edgar .
NONLINEARITY, 1988, 1 (04) :617-652
[6]  
EDWARDS WS, 1991, EUR J MECH B-FLUID, V10, P205
[7]   SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW [J].
GOLUBITSKY, M ;
STEWART, I .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (02) :249-288
[8]   PATTERN-FORMATION AND BISTABILITY IN FLOW BETWEEN COUNTERROTATING CYLINDERS [J].
GOLUBITSKY, M ;
LANGFORD, WF .
PHYSICA D, 1988, 32 (03) :362-392
[9]   Stabilization of domain walls between traveling waves by nonlinear mode coupling in taylor-couette flow [J].
Heise, M. ;
Hoffmann, Ch. ;
Abshagen, J. ;
Pinter, A. ;
Pfister, G. ;
Luecke, M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (06)
[10]   Localized spirals in Taylor-Couette flow [J].
Heise, M. ;
Abshagen, J. ;
Kueter, D. ;
Hochstrate, K. ;
Pfister, G. ;
Hoffmann, Ch. .
PHYSICAL REVIEW E, 2008, 77 (02)