On the total Roman domination number of graphs

被引:0
作者
Ahangar, H. Abdollahzadeh [1 ]
Amjadi, J. [2 ]
Sheikholeslami, S. M. [2 ]
Soroudi, M. [2 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Babol, Iran
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
total Roman dominating function; total Roman domination number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Roman dominating function on a graph G is a function f : V (G) -> {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. A total Roman dominating function is a Roman dominating function with the additional property that the subgraph of G induced by the set of all vertices of positive weight has no isolated vertices. The weight of a total Roman dominating function f is the value Sigma(u is an element of V(G))f(u). The total Roman domination number of G, gamma(tR)(G), is the minimum weight of a total Roman dominating function in G. In this paper, we establish some sharp bounds on the total Roman domination number of a graph. In addition, we determine the total Roman domination number of grid graphs P-2 square P-n and P-3 square P-n for n >= 2.
引用
收藏
页码:295 / 310
页数:16
相关论文
共 15 条
  • [1] Signed Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Henning, Michael A.
    Loewenstein, Christian
    Zhao, Yancai
    Samodivkin, Vladimir
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 241 - 255
  • [2] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [3] Nordhaus-Gaddum bounds for total Roman domination
    Amjadi, J.
    Sheikholeslami, S. M.
    Soroudi, M.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) : 126 - 133
  • [4] Amjadi J, 2017, AUSTRALAS J COMB, V69, P271
  • [5] Amjadi J, 2017, DISCRET MATH ALGORIT, V9, DOI 10.1142/S1793830917500501
  • [6] Antiadi J., IN PRESS
  • [7] EXTREMAL PROBLEMS FOR ROMAN DOMINATION
    Chambers, Erin W.
    Kinnersley, Bill
    Prince, Noah
    West, Douglas B.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1575 - 1586
  • [8] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [9] ROMAN DOMINATION IN CARTESIAN PRODUCT GRAPHS AND STRONG PRODUCT GRAPHS
    Gonzalez Yero, Ismael
    Alberto Rodriguez-Velazquez, Juan
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 262 - 274
  • [10] Haynes T. W., 1998, FUNDAMENTALS DOMINAT, DOI DOI 10.1201/9781482246582