Monte Carlo Markov chain techniques for unsupervised MRF-based image denoising

被引:2
|
作者
Tonazzini, A [1 ]
Bedini, L [1 ]
机构
[1] Ist Elaborazione Informaz, Consiglio Nazl Ric, Area Ric CNR Pisa, I-56124 Pisa, Italy
关键词
image denoising; Gibbs prior; unsupervised edge-preserving image restoration; Bayesian estimation; Markov chain Monte Carlo technique;
D O I
10.1016/S0167-8655(02)00188-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with discontinuity-adaptive smoothing for recovering degraded images, when Markov random field models with explicit lines are used, but no a priori information about the free parameters of the related Gibbs distributions is available. The adopted approach is based on the maximization of the posterior distribution with respect to the line field and the Gibbs parameters, while the intensity field is assumed to be clamped to the maximizer of the posterior itself, conditioned on the lines and the parameters. This enables the application of a mixed-annealing algorithm for the maximum a posteriori (MAP) estimation of the image field, and of Markov chain Monte Carlo techniques, over binary variables only, for the simultaneous maximum likelihood estimation of the parameters. A practical procedure is then derived which is nearly as fast as a MAP image reconstruction by mixed-annealing with known Gibbs parameters. We derive the method for the general case of a linear degradation process plus superposition of additive noise, and experimentally validate it for the sub-case of image denoising. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 46 条
  • [11] Bayesian analysis of the discovery process model using Markov chain Monte Carlo
    Sinding-Larsen R.
    Xu J.
    Natural Resources Research, 2005, 14 (4) : 333 - 344
  • [12] Bayesian estimation of NIG models via Markov chain Monte Carlo methods
    Karlis, D
    Lillestöl, J
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (04) : 323 - 338
  • [13] Statistical regularization in linearized microwave imaging through MRF-based MAP estimation: Hyperparameter estimation and image computation
    Pascazio, V
    Ferraiuolo, G
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (05) : 572 - 582
  • [14] Image Poisson denoising algorithm based on Markov fields of experts
    Jia Z.
    Dong W.-D.
    Xu G.-L.
    Zhu S.-P.
    Dong, Wen-De (dongwende@nuaa.edu.cn), 2020, Zhejiang University (54): : 1164 - 1169
  • [15] Estimating the Granularity Coefficient of a Potts-Markov Random Field within a Markov Chain Monte Carlo Algorithm
    Pereyra, Marcelo
    Dobigeon, Nicolas
    Batatia, Hadj
    Tourneret, Jean-Yves
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (06) : 2385 - 2397
  • [16] Markov chain Monte Carlo approach to the analysis of response patterns in data collection process
    Chun, Young H.
    Watson, Edward F.
    INFOR, 2023, 61 (04) : 509 - 529
  • [17] Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo method
    Yang, ZH
    Rannala, B
    MOLECULAR BIOLOGY AND EVOLUTION, 1997, 14 (07) : 717 - 724
  • [18] Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods
    Moussaoui, S
    Carteret, C
    Brie, D
    Mohammad-Djafari, A
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 81 (02) : 137 - 148
  • [19] Frame-based image denoising using hidden Markov model
    Yang, Xiaoyuan
    Zhang, Xudong
    Zhu, Zhipin
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (03) : 419 - 432
  • [20] Building a Simpler Moderated Nonlinear Factor Analysis Model With Markov Chain Monte Carlo Estimation
    Enders, Craig K.
    Vera, Juan Diego
    Keller, Brian T.
    Lenartowicz, Agatha
    Loo, Sandra K.
    PSYCHOLOGICAL METHODS, 2024,