Multiple solutions for a fractional p-Kirchhoff problem with Hardy nonlinearity

被引:16
作者
Chen, Wenjing [1 ]
Gui, Yuyan [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
关键词
Fractional p-Kirchhoff type problem; Critical Hardy-Sobolev exponent; Concentration compactness principle; NEHARI MANIFOLD; SYSTEM;
D O I
10.1016/j.na.2019.06.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study the existence of multiple solutions for the following fractional p-Kirchhoff problem { M (integral(R2n) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(n+ps) dxdy) (-Delta)p( u (0.1) -)(s) lambda vertical bar u vertical bar(q-2 )u + vertical bar u vertical bar(r-2) u/vertical bar x vertical bar(alpha), in Omega, u = 0, in R-n\Omega, where (-Delta)(p)(s )denotes the fractional p-Laplace operator, Omega is a smooth bounded set in a R-n containing 0 with Lipschitz boundary, M(t) = a + bt(theta-1) with a >= 0, b > 0, theta > 1. lambda > 0, 1 < q < p < theta p <= r <= p(alpha)*, p(alpha)*= (n-alpha)p/n-ps is the fractional critical Hardy-Sobolev exponent for 0 <= alpha < ps < n. By using fibering maps and Nehari manifold, we obtain that the existence of multiple solutions to problem 0.1 for both Hardy-Sobolev subcritical and critical cases. In particular, the concentration compactness principle will be used to overcome the lack of compactness for the critical case. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:316 / 338
页数:23
相关论文
共 21 条
[1]   Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity [J].
Autuori, Giuseppina ;
Fiscella, Alessio ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 :699-714
[2]   Optimal decay of extremals for the fractional Sobolev inequality [J].
Brasco, Lorenzo ;
Mosconi, Sunra ;
Squassina, Marco .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (02) :1-32
[3]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[4]   Nonlocal problems with critical Hardy nonlinearity [J].
Chen, Wenjing ;
Mosconi, Sunra ;
Squassina, Marco .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (11) :3065-3114
[5]   Critical Nonlocal Systems with Concave-Convex Powers [J].
Chen, Wenjing ;
Squassina, Marco .
ADVANCED NONLINEAR STUDIES, 2016, 16 (04) :821-842
[6]   The Nehari manifold for a fractional p-Laplacian system involving concave-convex nonlinearities [J].
Chen, Wenjing ;
Deng, Shengbing .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 :80-92
[7]   The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities [J].
Chen, Wenjing ;
Deng, Shengbing .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :1387-1400
[8]  
Fiscella A., 2018, NONLINEAR ANAL, DOI [10.1016/j.na.2018.09006, DOI 10.1016/J.NA.2018.09006]
[9]   Kirchhoff-Hardy Fractional Problems with Lack of Compactness [J].
Fiscella, Alessio ;
Pucci, Patrizia .
ADVANCED NONLINEAR STUDIES, 2017, 17 (03) :429-456
[10]   p-fractional Kirchhoff equations involving critical nonlinearities [J].
Fiscella, Alessio ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 :350-378