A Hierarchical Neural Hybrid Method for Failure Probability Estimation

被引:7
作者
Li, Ke [1 ]
Tang, Kejun [1 ]
Li, Jinglai [2 ]
Wu, Tianfan [3 ]
Liao, Qifeng [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England
[3] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90007 USA
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Hierarchical method; hybrid method; PDEs; rare events; PARTIAL-DIFFERENTIAL-EQUATIONS; RESPONSE-SURFACE APPROACH; RELIABILITY; NETWORKS;
D O I
10.1109/ACCESS.2019.2934980
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Failure probability evaluation for complex physical and engineering systems governed by partial differential equations (PDEs) are computationally intensive, especially when high-dimensional random parameters are involved. Since standard numerical schemes for solving these complex PDEs are expensive, traditional Monte Carlo methods which require repeatedly solving PDEs are infeasible. Alternative approaches which are typically the surrogate based methods suffer from the so-called "curse of dimensionality'', which limits their application to problems with high-dimensional parameters. For this purpose, we develop a novel hierarchical neural hybrid (HNH) method to efficiently compute failure probabilities of these challenging high-dimensional problems. Especially, multifidelity surrogates are constructed based on neural networks with different levels of layers, such that expensive highfidelity surrogates are adapted only when the parameters are in the suspicious domain. The efficiency of our new HNH method is theoretically analyzed and is demonstrated with numerical experiments. From numerical results, we show that to achieve an accuracy in estimating the rare failure probability (e.g., 10(-5)), the traditional Monte Carlo method needs to solve PDEs more than a million times, while our HNH only requires solving them a few thousand times.
引用
收藏
页码:112087 / 112096
页数:10
相关论文
共 30 条