Aromaphilicity Index of Amino Acids: Molecular Dynamics Simulations of the Protein Binding Affinity for Carbon Nanomaterials

被引:40
作者
Hirano, Atsushi [1 ]
Kameda, Tomoshi [2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Nanomat Res Inst, Tsukuba, Ibaraki 3058565, Japan
[2] Natl Inst Adv Ind Sci & Technol, Artificial Intelligence Res Ctr, Koto Ku, Tokyo 1350064, Japan
关键词
amino acid; aromatic; carbon nanotube; free energy; graphene; molecular dynamics; protein corona; BLOOD PROTEINS; FORCE-FIELDS; SIDE-CHAINS; NANOTUBES; ADSORPTION; RESIDUES; FUNCTIONALIZATION; SOLUBILITY; DISPERSION; EFFICIENT;
D O I
10.1021/acsanm.0c03047
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Aromatic carbon nanomaterials, such as carbon nanotubes and graphene, undergo protein adsorption in the early stages of their uptake into biological systems, which determines their bioavailability and cytotoxicity. Although a mechanistic understanding of protein-nanomaterial interactions is essential for realizing safe and controlled in vivo applications of nanomaterials, it remains challenging to predict arbitrary protein-nanomaterial interactions. This study introduces an index, "aromaphilicity (aromatic-loving nature) index", for 20 proteinogenic amino acids. This index reflects the affinity of the amino acid side chains for the aromatic carbon surfaces, which was quantified by molecular dynamics simulations. This index is significantly correlated with the experimental data (R-2 = 0.789) and successfully utilized as a versatile tool for predicting the affinity hot spots of the proteins for the aromatic carbon nanomaterials. This approach advances the understanding of the mechanism of protein-nanomaterial interactions and improves prediction of the biological impacts of nanomaterials.
引用
收藏
页码:2486 / 2495
页数:10
相关论文
共 69 条
[1]   Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications [J].
Antonucci, Alessandra ;
Kupis-Rozmyslowicz, Justyna ;
Boghossian, Ardemis A. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (13) :11321-11331
[2]   Recent Advances in Applications of Sorted Single-Walled Carbon Nanotubes [J].
Bati, Abdulaziz S. R. ;
Yu, LePing ;
Batmunkh, Munkhbayar ;
Shapter, Joseph G. .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (30)
[3]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[4]   FINITE REPRESENTATION OF AN INFINITE BULK SYSTEM - SOLVENT BOUNDARY POTENTIAL FOR COMPUTER-SIMULATIONS [J].
BEGLOV, D ;
ROUX, B .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (12) :9050-9063
[5]   Understanding Noncovalent Interactions of Small Molecules with Carbon Nanotubes [J].
Calbo, Joaquin ;
Lopez-Moreno, Alejandro ;
de Juan, Alberto ;
Comer, Jeffrey ;
Orti, Enrique ;
Perez, Emilio M. .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (52) :12909-12916
[6]   Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles [J].
Cedervall, Tommy ;
Lynch, Iseult ;
Lindman, Stina ;
Berggard, Tord ;
Thulin, Eva ;
Nilsson, Hanna ;
Dawson, Kenneth A. ;
Linse, Sara .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2050-2055
[7]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[8]  
Doren D. J., 2011, TUBEGEN 34
[9]  
Dresselhaus G., 1998, Physicalproperties of carbon nanotubes
[10]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593