Ground states of the massless Derezinski-Gerard model

被引:1
作者
Ohkubo, Atsushi [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Kyoto 6068501, Japan
关键词
PAULI-FIERZ HAMILTONIANS; SPECTRAL THEORY; EXISTENCE;
D O I
10.1063/1.3253976
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the massless Derezinski-Gerard model introduced by Derezinski and Gerard in 1999. We give a sufficient condition for the existence of a ground state of the massless Derezinski-Gerard model without the assumption that the Hamiltonian of particles has compact resolvent. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3253976]
引用
收藏
页数:10
相关论文
共 11 条
[1]   Asymptotic completeness for a renormalized nonrelativistic hamiltonian in quantum field theory: The nelson model [J].
Ammari Z. .
Mathematical Physics, Analysis and Geometry, 2000, 3 (3) :217-285
[2]   Ground states of a general class of quantum field Hamiltonians [J].
Arai, A ;
Hirokawa, M .
REVIEWS IN MATHEMATICAL PHYSICS, 2000, 12 (08) :1085-1135
[3]   On the existence and uniqueness of ground states of a generalized spin-boson model [J].
Arai, A ;
Hirokawa, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :455-503
[4]   Pauli-Fierz Hamiltonians defined as quadratic forms [J].
Bruneau, L ;
Derezinski, J .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :169-199
[5]   Asymptotic completeness in quantum in field theory.: Massive Pauli-Fierz Hamiltonians [J].
Derezinski, J ;
Gérard, C .
REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (04) :383-450
[6]   Spectral theory of Pauli-Fierz operators [J].
Derezinski, J ;
Jaksic, V .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :243-327
[7]   Spectral theory of massless Pauli-Fierz models [J].
Georgescu, V ;
Gérard, C ;
Moller, JS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (01) :29-78
[8]   On the existence of ground states for massless Pauli-Fierz Hamiltonians [J].
Gérard, C .
ANNALES HENRI POINCARE, 2000, 1 (03) :443-459
[9]   Ground states and spectrum of quantum electrodynamics of nonrelativistic particles [J].
Hiroshima, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (11) :4497-4528
[10]  
MIYAO T, 2005, HOKKAIDO MATH J, V34, P689, DOI DOI 10.14492/H0KMJ/1285766293