Profit-Maximizing Model Marketplace with Differentially Private Federated Learning

被引:23
|
作者
Sun, Peng [1 ,2 ]
Chen, Xu [3 ]
Liao, Guocheng [4 ]
Huang, Jianwei [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen, Peoples R China
[2] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
[3] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[4] Sun Yat Sen Univ, Sch Software Engn, Zhuhai, Peoples R China
来源
IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2022) | 2022年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
ML model marketplace; federated learning; differential privacy; incentive mechanism;
D O I
10.1109/INFOCOM48880.2022.9796833
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Existing machine learning (ML) model marketplaces generally require data owners to share their raw data, leading to serious privacy concerns. Federated learning (FL) can partially alleviate this issue by enabling model training without raw data exchange. However, data owners are still susceptible to privacy leakage from gradient exposure in FL, which discourages their participation. In this work, we advocate a novel differentially private FL (DPFL)-based ML model marketplace. We focus on the broker-centric design. Specifically, the broker first incentivizes data owners to participate in model training via DPFL by offering privacy protection as per their privacy budgets and explicitly accounting for their privacy costs. Then, it conducts optimal model versioning and pricing to sell the obtained model versions to model buyers. In particular, we focus on the broker's profit maximization, which is challenging due to the significant difficulties in the revenue characterization of model trading and the cost estimation of DPFL model training. We propose a two-layer optimization framework to address it, i.e., revenue maximization and cost minimization under model quality constraints. The latter is still challenging due to its non-convexity and integer constraints. We hence propose efficient algorithms, and their performances are both theoretically guaranteed and empirically validated.
引用
收藏
页码:1439 / 1448
页数:10
相关论文
共 50 条
  • [21] Differentially Private federated learning to Protect Identity in Stress Recognition
    Guelta, Bouchiba
    Benbakreti, Samir
    Boumediene, Kadda
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (06): : 36 - 41
  • [22] An Optimized Sparse Response Mechanism for Differentially Private Federated Learning
    Ma, Jiating
    Zhou, Yipeng
    Cui, Laizhong
    Guo, Song
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 2285 - 2295
  • [23] Boosting Accuracy of Differentially Private Continuous Data Release for Federated Learning
    Cai, Jianping
    Ye, Qingqing
    Hu, Haibo
    Liu, Ximeng
    Fu, Yanggeng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 10287 - 10301
  • [24] A Federated Learning Framework Based on Differentially Private Continuous Data Release
    Cai, Jianping
    Liu, Ximeng
    Ye, Qingqing
    Liu, Yang
    Wang, Yuyang
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 4879 - 4894
  • [25] Differentially private federated learning with local momentum updates and gradients filtering
    Zhang, Shuaishuai
    Huang, Jie
    Li, Peihao
    Liang, Chuang
    INFORMATION SCIENCES, 2024, 680
  • [26] Personalized Differentially Private Federated Learning without Exposing Privacy Budgets
    Liu, Junxu
    Lou, Jian
    Xiong, Li
    Meng, Xiaofeng
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4140 - 4144
  • [27] Joint Client Selection and Privacy Compensation for Differentially Private Federated Learning
    Xu, Ruichen
    Zhang, Ying-Jun Angela
    Huang, Jianwei
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [28] Differentially Private Federated Learning in Edge Networks: The Perspective of Noise Reduction
    Li, Yiwei
    Wang, Shuai
    Chi, Chong-Yung
    Quek, Tony Q. S.
    IEEE NETWORK, 2022, 36 (05): : 167 - 172
  • [29] Privacy-Preserving Federated Learning with Differentially Private Hyperdimensional Computing
    Piran, Fardin Jalil
    Chen, Zhiling
    Imani, Mohsen
    Imani, Farhad
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [30] ADPF: Anti-inference differentially private protocol for federated learning
    Zhao, Zirun
    Lin, Zhaowen
    Sun, Yi
    COMPUTER NETWORKS, 2025, 261