Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens

被引:99
作者
Mari, Stephane
Gendre, Delphine
Pianelli, Katia
Ouerdane, Laurent
Lobinski, Ryszard
Briat, Jean-Francois
Lebrun, Michel
Czernic, Pierre
机构
[1] Univ Montpellier 2, Ecole Normale Super Agron, CNRS, UMR 5004,INRA, F-34060 Montpellier 2, France
[2] CNRS, UMR 5034, Lab Chim Bioinorgan Environm, F-64053 Pau 09, France
关键词
circulation; metal chelation; metal hyperaccumulation; nicotianamine; nickel;
D O I
10.1093/jxb/erl184
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant metal hyperaccumulator species are widely used as models to unravel the heavy metal tolerance and hyperaccumulation mechanisms. Thlaspi caerulescens is capable of tolerating and hyperaccumulating Zn, Cd, and Ni. A search for factors involved in the cellular tolerance to Ni, based on yeast screens, led to isolation of a cDNA encoding a functional nicotianamine (NA) synthase (NAS). The T. caerulescens genome appears to contain a single copy of the NAS gene named TcNAS whose expression is restricted to the leaves. The analysis of dose-response and time-course Ni treatments have revealed that the exposure to Ni triggers the accumulation of NA in the roots. Because neither TcNAS expression nor NAS activity were detected in the roots, the NA accumulation in roots is most probably the result of its translocation from the leaves. Once in the roots, NA, together with Ni, is subsequently found in the xylem, for redirection to the aerial parts. Using liquid chromatography coupled to inductively coupled plasma or electrospray ionization mass spectrometry, it has been shown that part of the Ni is translocated as a stable Ni-NA complex in the xylem sap. This circulation of NA, Ni, and NA-Ni chelates is absent in the non-tolerant non-hyperaccumulator related species T. arvense. Taken together, the results provide direct physiological and chemical evidence for NA and NA-heavy metal complex translocation in a hyperaccumulator species.
引用
收藏
页码:4111 / 4122
页数:12
相关论文
共 48 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens [J].
Assunçao, AGL ;
Martins, PD ;
De Folter, S ;
Vooijs, R ;
Schat, H ;
Aarts, MGM .
PLANT CELL AND ENVIRONMENT, 2001, 24 (02) :217-226
[3]   Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants [J].
Assunçao, AGL ;
Schat, H ;
Aarts, MGM .
NEW PHYTOLOGIST, 2003, 159 (02) :351-360
[4]  
Ausubel F.A., 1999, CURRENT PROTOCOLS MO
[5]  
BAKER A J M, 1989, Biorecovery, V1, P81
[6]   ON THE NORMALIZING FACTOR FOR THE TOMATO MUTANT CHLORONERVA .13. METAL-COMPLEX FORMATION BY NICOTIANAMINE, A POSSIBLE PHYTOSIDEROPHORE [J].
BENES, I ;
SCHREIBER, K ;
RIPPERGER, H ;
KIRCHEISS, A .
EXPERIENTIA, 1983, 39 (03) :261-262
[7]   A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens [J].
Bernard, C ;
Roosens, N ;
Czernic, P ;
Lebrun, M ;
Verbruggen, N .
FEBS LETTERS, 2004, 569 (1-3) :140-148
[8]   Plant responses to metal toxicity [J].
Briat, JF ;
Lebrun, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE III-SCIENCES DE LA VIE-LIFE SCIENCES, 1999, 322 (01) :43-54
[9]   DETECTION OF NICKELIFEROUS ROCKS BY ANALYSIS OF HERBARIUM SPECIMENS OF INDICATOR PLANTS [J].
BROOKS, RR ;
LEE, J ;
REEVES, RD ;
JAFFRE, T .
JOURNAL OF GEOCHEMICAL EXPLORATION, 1977, 7 (01) :49-57
[10]   A long way ahead:: understanding and engineering plant metal accumulation [J].
Clemens, S ;
Palmgren, MG ;
Krämer, U .
TRENDS IN PLANT SCIENCE, 2002, 7 (07) :309-315