Levy processes in free probability

被引:13
作者
Barndorff-Nielsen, OE
Thorbjornsen, S [1 ]
机构
[1] Univ So Denmark, Dept Math & Comp Sci, DK-5230 Odense M, Denmark
[2] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus, Denmark
关键词
D O I
10.1073/pnas.232598299
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This is the continuation of a previous article that studied the relationship between the classes of infinitely divisible probability measures in classical and free probability, respectively, via the Bercovici-Pata bijection. Drawing on the results of the preceding article, the present paper outlines recent developments in the theory of Levy processes in free probability.
引用
收藏
页码:16576 / 16580
页数:5
相关论文
共 18 条
[1]  
AHSHELEVICH M, 2002, J FUNCT ANAL, V188, P292
[2]  
Barndorff-Nielsen O.E., 1997, Finance and Stochastics, V2, P41, DOI DOI 10.1007/S007800050032
[3]   Levy laws in free probability [J].
Barndorff-Nielsen, OE ;
Thorbjornsen, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16568-16575
[4]  
Barndorff-Nielsen OE, 2002, BERNOULLI, V8, P323
[5]  
BARNDORFFNIELSE.OE, 2001, LEVY PROCESSES THEOR
[6]  
BENGHORBAL A, 2001, ALGEBRAIC FDN NONCOM
[7]  
Bertoin J., 2000, SUBORDINATORS LEVY P
[8]  
BERTOIN J, 1997, LECT PROBABILITY THE, P4
[9]   Stochastic calculus with respect to free Brownian motion and analysis on Wigner space [J].
Biane, P ;
Speicher, R .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 112 (03) :373-409
[10]   Processes with free increments [J].
Biane, P .
MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (01) :143-174