Total curvature and L2 harmonic 1-forms on complete submanifolds in space forms

被引:30
作者
Fu, Hai-Ping [1 ,2 ]
Xu, Hong-Wei [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
[2] Nangchang Univ, Dept Math, Nanchang 330047, Peoples R China
关键词
Submanifold; Total curvature; L-2 harmonic forms; Mean curvature; Ends; MINIMAL HYPERSURFACES; MANIFOLDS; SOBOLEV; RN+1;
D O I
10.1007/s10711-009-9392-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-n be an n-dimensional complete noncompact oriented submanifold with finite total curvature, i.e., integral(M)(vertical bar A vertical bar(2) - n vertical bar H vertical bar(2))(n/2) < infinity, in an (n + p)-dimensional simply connected space form Nn+p (c) of constant curvature c, where vertical bar H vertical bar and vertical bar A vertical bar(2) are the mean curvature and the squared length of the second fundamental form of M, respectively. We prove that if M satisfies one of the following: (i) n >= 3, c = 0 and integral(M) vertical bar H vertical bar(n) < infinity; (ii) n >= 5, c = -1 and vertical bar H vertical bar < 1 - 2/root n; (iii) n >= 3, c = 1 and vertical bar H vertical bar is bounded, then the dimension of the space of L-2 harmonic 1-forms on M is finite. Moreover, in the case of (i) or (ii), M must have finitely many ends.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 16 条
[1]  
Cao HD, 1997, MATH RES LETT, V4, P637
[2]  
Chavel I., 1993, Riemannian Geometry: A Modern Introduction
[3]  
CHENG X, ARXIVMATHDG0602007
[4]   Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space [J].
Cheung, LF ;
Leung, PF .
MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (03) :525-530
[5]  
FU HP, 2006, L2 HARMONIC 1 FORMS
[6]   SOBOLEV AND ISOPERIMETRIC INEQUALITIES FOR RIEMANNIAN SUBMANIFOLDS [J].
HOFFMAN, D ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (06) :715-727
[7]  
LI P, 1980, ANN SCI ECOLE NORM S, V13, P451
[8]  
Li P, 2002, MATH RES LETT, V9, P95
[9]  
LI P, 1992, J DIFFER GEOM, V35, P359
[10]  
Li P., 2000, Survey in Differential Geometry, in Honor of Atiyah, Bott, Hirzebruch and Singer, V7, P71