THE SPECTRUM OF THE 1-LAPLACE OPERATOR

被引:42
作者
Chang, Kung Ching [1 ]
机构
[1] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
关键词
1-Laplace operator; nonsmooth critical point theory; bounded variation function; eigenvalue problem; CRITICAL-POINT THEORY;
D O I
10.1142/S0219199709003570
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eigenfunction of the 1-Laplace operator is defined to be a critical point in the sense of the strong slope for a nonsmooth constraint variational problem. We completely write down all these eigenfunctions for the 1-Laplace operator on intervals.
引用
收藏
页码:865 / 894
页数:30
相关论文
共 32 条
[1]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[2]   Some qualitative properties for the total variation flow [J].
Andreu, F ;
Caselles, V ;
Diaz, JI ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) :516-547
[3]  
Andreu F., 2004, Progress in Mathematics., V233
[4]  
Andreu F., 2001, DIFFERENTIAL INTEGRA, V14, P321
[5]  
[Anonymous], 1993, Topol. Methods Nonlinear Anal., DOI DOI 10.12775/TMNA.1993.012
[6]   Explicit solutions of the eigenvalue problem -div(Du/|Du|) = u in R2 [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1095-1129
[7]   The total variation flow in RN [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :475-525
[8]  
Canino A, 1995, NATO ADV SCI INST SE, V343, P1
[9]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[10]  
Corvellec J. N., 1997, Z ANAL ANWEND, V16, P405, DOI [10.4171/ZAA/770, DOI 10.4171/ZAA/770]