Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion

被引:129
作者
Arisoy, Yigit M. [1 ]
Criales, Luis E. [1 ]
Ozel, Tugrul [1 ]
Lane, Brandon [2 ]
Moylan, Shawn [2 ]
Donmez, Alkan [2 ]
机构
[1] Rutgers State Univ, Dept Ind & Syst Engn, 96 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] NIST, Engn Lab, Gaithersburg, MD 20899 USA
关键词
Additive manufacturing; Selective laser melting; Laser powder bed fusion; Microstructure; Nickel alloy IN625; RESIDUAL-STRESSES; MELTING PROCESS; BEHAVIOR;
D O I
10.1007/s00170-016-9429-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Laser powder bed fusion (L-PBF) as an additive manufacturing process produces nearly fully dense nickel alloy 625 (IN625) parts with complex features. L-PBF generates surfaces and microstructure through directional solidification that can be controlled by scan strategies and selection of process parameters. This study provides experimental investigations on microstructure formation including sizes of cellular grains and growth directions of columnar grains on the nickel alloy 625 test coupons. The effects of process parameters including laser power, scan velocity, hatch distance, and scan strategy that produce various solidification cooling rates and thermal gradients during the process, which also contribute to resultant microstructure, have been analyzed. Optimization studies are conducted on several objectives to improve the productivity while controlling the process effects on the resultant microstructure using response surface regression, desirability functions, and multi-objective genetic algorithm optimization.
引用
收藏
页码:1393 / 1417
页数:25
相关论文
共 24 条
[1]   Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J].
Amato, K. N. ;
Gaytan, S. M. ;
Murr, L. E. ;
Martinez, E. ;
Shindo, P. W. ;
Hernandez, J. ;
Collins, S. ;
Medina, F. .
ACTA MATERIALIA, 2012, 60 (05) :2229-2239
[2]  
Anam MA, 2014, INT SOL FREEF FABR S, DOI [10.26153/tsw/15692, DOI 10.26153/TSW/15692]
[3]   Surface integrity of selective-laser-melted components [J].
Brinksmeier, E. ;
Levy, G. ;
Meyer, D. ;
Spierings, A. B. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2010, 59 (01) :601-606
[4]   The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy [J].
Carter, Luke N. ;
Martin, Christopher ;
Withers, Philip J. ;
Attallah, Moataz M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 :338-347
[5]  
Criales L, 2016, INT J ADV M IN PRESS
[6]  
Deb K., 2001, MULTIOBJECTIVE OPTIM, DOI DOI 10.1109/TEVC.2002.804322
[7]  
Hernandez J., 2012, J MAT SCI RES, V1, P124
[8]   Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts: Tailored microstructures and enhanced performance [J].
Hong, Chen ;
Gu, Dongdong ;
Dai, Donghua ;
Alkhayat, Moritz ;
Urban, Wolf ;
Yuan, Pengpeng ;
Cao, Sainan ;
Gasser, Andres ;
Weisheit, Andreas ;
Kelbassa, Ingomar ;
Zhong, Minlin ;
Poprawe, Reinhart .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 635 :118-128
[9]   Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties [J].
Jia, Qingbo ;
Gu, Dongdong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 585 :713-721
[10]   Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones [J].
Khairallah, Saad A. ;
Anderson, Andrew T. ;
Rubenchik, Alexander ;
King, Wayne E. .
ACTA MATERIALIA, 2016, 108 :36-45