SIGNIFICANT WAVE HEIGHT RETRIEVAL BASED ON THE EFFECTIVE NUMBER OF INCOHERENT AVERAGES

被引:0
|
作者
Martin, F. [1 ,2 ]
Camps, A. [1 ,2 ]
Martin-Neira, M. [3 ]
D'Addio, S. [3 ]
Fabra, F. [4 ]
Rius, A. [4 ]
Park, H. [1 ,2 ]
机构
[1] Univ Politecn Cataluna, Remote Sensing Lab, ES-08034 Barcelona, Spain
[2] IEEC UPC, Barcelona 08034, Spain
[3] European Space Agcy, RF Syst & Payload Div, Estec, NL-2200 AG Noordwijk, Netherlands
[4] Inst EstudisEspacials Catalunya IEEC ICE CSIC, Fac Ciencies, Bellaterra 08193, Spain
来源
2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2015年
关键词
GNSS-R; Significant Wave Height; Coherence Time; Lag correlation; Speckle noise; R OCEAN ALTIMETRY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effectiveness of incoherent averaging depends on the level of correlation between consecutive waveforms, which can vary with the geometry and with the sea state conditions. In addition it is also dependent on the lag position, since the level of correlation is not the same for all the lags. An initial estimation of the lag correlation can be done by means the ratio (R) between the actual number of incoherent averages and the effective number of incoherent averages. This work is structured in two parts: In the first part the concept of using of the ratio R as a new observable to estimate the significant wave height is detailed. In the second part, data from the TIGRIS experiment is used in order to relate the R with the significant wave height, comparing its performance with the performance obtained with the coherence time.
引用
收藏
页码:3634 / 3637
页数:4
相关论文
共 50 条
  • [21] An effective estimation strategy for significant wave height via independent component analysis
    Wu, Fan
    Wang, Wei
    Hu, Ziying
    Wang, Xianpeng
    OCEAN ENGINEERING, 2022, 250
  • [22] A Technique for SAR Significant Wave Height Retrieval Using Azimuthal Cut-Off Wavelength Based on Machine Learning
    Leng, Shaijie
    Hao, Mengyu
    Shao, Weizeng
    Marino, Armando
    Jiang, Xingwei
    REMOTE SENSING, 2024, 16 (09)
  • [23] Significant Wave Height Prediction Based on MSFD Neural Network
    Wang, Huan
    Fu, Dongyang
    Liao, Shan
    Wang, Guancheng
    Xiao, Xiuchun
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 39 - 43
  • [24] Prediction of significant wave height based on feature decomposition and enhancement
    Wu, Lin
    An, Yi
    Qin, Pan
    Hu, Huo-Sheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 277
  • [25] Prediction of significant wave height based on EEMD and deep learning
    Song, Tao
    Wang, Jiarong
    Huo, Jidong
    Wei, Wei
    Han, Runsheng
    Xu, Danya
    Meng, Fan
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [26] A newly developed ocean significant wave height retrieval method from Envisat ASAR wave mode imagery
    Fan, Chenqing
    Wang, Xiaochen
    Zhang, Xudong
    Gao, Dong
    ACTA OCEANOLOGICA SINICA, 2019, 38 (09) : 120 - 127
  • [27] A newly developed ocean significant wave height retrieval method from Envisat ASAR wave mode imagery
    Chenqing Fan
    Xiaochen Wang
    Xudong Zhang
    Dong Gao
    Acta Oceanologica Sinica, 2019, 38 : 120 - 127
  • [28] A newly developed ocean significant wave height retrieval method from Envisat ASAR wave mode imagery
    Chenqing Fan
    Xiaochen Wang
    Xudong Zhang
    Dong Gao
    ActaOceanologicaSinica, 2019, 38 (09) : 120 - 127
  • [29] Global Significant Wave Height Retrieval From Spaceborne GNSS-R Using Transformers
    Qiao, Xin
    Huang, Weimin
    OCEANS 2024 - SINGAPORE, 2024,
  • [30] Construction of spaceborne GNSS-R ocean waves significant wave height retrieval model
    Bu J.
    Yu K.
    Han S.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (09): : 1920 - 1930