Analysis of distributed systems via quasi-stationary distributions

被引:0
作者
Champagnat, Nicolas [1 ]
Schott, Rene [1 ]
Villemonais, Denis [1 ]
机构
[1] Univ Lorraine, CNRS, INRIA, IECL, F-54000 Nancy, France
关键词
Distributed algorithms; deadlock; quasi-stationary distributions;
D O I
10.1080/07362994.2020.1861952
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new probabilistic analysis of distributed systems. Our approach relies on the theory of quasi-stationary distributions (QSD) and the results recently developed by the first and third authors. We give properties on the deadlock time and the distribution of the model before deadlock, both for discrete and diffusion models. Our results apply to any finite values of the involved parameters (time, numbers of resources, number of processors, etc.) and reflect the real behavior of these systems, with potential applications to deadlock prevention.
引用
收藏
页码:981 / 998
页数:18
相关论文
共 31 条
[1]   A Fleming-Viot particle representation of the Dirichlet Laplacian [J].
Burdzy, K ;
Holyst, R ;
March, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (03) :679-703
[2]   Criteria for Exponential Convergence to Quasi-Stationary Distributions and Applications to Multi-Dimensional Diffusions [J].
Champagnat, Nicolas ;
Coulibaly-Pasquier, Kolehe Abdoulaye ;
Villemonais, Denis .
SEMINAIRE DE PROBABILITES XLIX, 2018, 2215 :165-182
[3]   Uniform convergence to the Q-process [J].
Champagnat, Nicolas ;
Villemonais, Denis .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
[4]  
Champagnat N, 2016, PROBAB THEORY REL, V164, P243, DOI 10.1007/s00440-014-0611-7
[5]   On time scales and quasi-stationary distributions for multitype birth-and-death processes [J].
Chazottes, J-R ;
Collet, P. ;
Meleard, S. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04) :2249-2294
[6]  
CHAZOTTES JR, 2016, PROBAB THEORY RELAT, V164
[7]  
Collet P., 2013, Markov Chains, Diffusions and Dynamical Systems, DOI [10.1007/978-3-642-33131-2, DOI 10.1007/978-3-642-33131-2]
[8]  
COMETS F, 2007, RANDOM STRUCT ALG, V30
[9]   Large Deviations Analysis for Distributed Algorithms in an Ergodic Markovian Environment [J].
Comets, Francis ;
Delarue, Francois ;
Schott, Rene .
APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 60 (03) :341-396
[10]   ON QUASI-STATIONARY DISTRIBUTIONS IN ABSORBING CONTINUOUS-TIME FINITE MARKOV CHAINS [J].
DARROCH, JN ;
SENETA, E .
JOURNAL OF APPLIED PROBABILITY, 1967, 4 (01) :192-&