Mechanical properties and fracture patterns of graphene (graphitic) nanowiggles

被引:21
作者
Bizao, R. A. [1 ,3 ]
Botari, T. [1 ]
Perim, E. [2 ]
Pugno, Nicola M. [3 ,4 ,5 ]
Galvao, D. S. [1 ]
机构
[1] Univ Estadual Campinas, Appl Phys Dept, BR-13083970 Campinas, SP, Brazil
[2] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[3] Univ Trento, Dept Civil Environm & Mech Engn, Lab Bioinspired & Graphene Nanomech, Via Mesiano 77, I-38123 Trento, Italy
[4] Italian Space Agcy, Ket Lab, Via Politecn Snc, I-00133 Rome, Italy
[5] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
基金
欧洲研究理事会; 巴西圣保罗研究基金会; 欧盟地平线“2020”;
关键词
REACTIVE FORCE-FIELD; REAXFF; DYNAMICS; CARBON;
D O I
10.1016/j.carbon.2017.04.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene nanowiggles (GNW) are graphene-based nanostructures obtained by making alternated regular cuts in pristine graphene nanoribbons. GNW were recently synthesized and it was demonstrated that they exhibit tunable electronic and magnetic properties by just varying their shape. Here, we have investigated the mechanical properties and fracture patterns of a large number of GNW of different shapes and sizes using fully atomistic reactive molecular dynamics simulations. Our results show that the GNW mechanical properties are strongly dependent on its shape and size and, as a general trend narrow sheets have larger ultimate strength and Young's modulus than wide ones. The estimated Young's modulus values were found to be in a range of approximate to 100 - 1000 GPa and the ultimate strength in a range of approximate to 20 - 110 GPa, depending on GNW shape. Also, super-ductile behavior under strain was observed for some structures. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:431 / 437
页数:7
相关论文
共 45 条
[1]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[2]   Exceptional ballistic transport in epitaxial graphene nanoribbons [J].
Baringhaus, Jens ;
Ruan, Ming ;
Edler, Frederik ;
Tejeda, Antonio ;
Sicot, Muriel ;
Taleb-Ibrahimi, Amina ;
Li, An-Ping ;
Jiang, Zhigang ;
Conrad, Edward H. ;
Berger, Claire ;
Tegenkamp, Christoph ;
de Heer, Walt A. .
NATURE, 2014, 506 (7488) :349-354
[3]  
Bizao R.A., 2014, MRS P, V1658, P14
[4]   Mechanical properties and fracture dynamics of silicene membranes [J].
Botari, T. ;
Perim, E. ;
Autreto, P. A. S. ;
van Duin, A. C. T. ;
Paupitz, R. ;
Galvao, D. S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (36) :19417-19423
[5]   Graphene healing mechanisms: A theoretical investigation [J].
Botari, Tiago ;
Paupitz, Ricardo ;
da Silva Autreto, Pedro Alves ;
Galvao, Douglas S. .
CARBON, 2016, 99 :302-309
[6]   Tuning the gap in bilayer graphene using chemical functionalization: Density functional calculations [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
PHYSICAL REVIEW B, 2008, 78 (08)
[7]   Atomistic simulations of mechanical properties of graphene nanoribbons [J].
Bu, Hao ;
Chen, Yunfei ;
Zou, Min ;
Yi, Hong ;
Bi, Kedong ;
Ni, Zhonghua .
PHYSICS LETTERS A, 2009, 373 (37) :3359-3362
[8]  
Buehler M.J., 2008, ATOMISTIC MODELING M, P1
[9]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[10]   Bulk production of a new form of sp2 carbon:: Crystalline graphene nanoribbons [J].
Campos-Delgado, Jessica ;
Romo-Herrera, Jose Manuel ;
Jia, Xiaoting ;
Cullen, David A. ;
Muramatsu, Hiroyuki ;
Kim, Yoong Ahm ;
Hayashi, Takuya ;
Ren, Zhifeng ;
Smith, David J. ;
Okuno, Yu ;
Ohba, Tomonori ;
Kanoh, Hirofumi ;
Kaneko, Katsumi ;
Endo, Morinobu ;
Terrones, Humberto ;
Dresselhaus, Mildred S. ;
Terrones, Mauriclo .
NANO LETTERS, 2008, 8 (09) :2773-2778