Fast linear canonical transforms

被引:66
作者
Healy, John J. [1 ,2 ,3 ]
Sheridan, John T. [1 ,2 ]
机构
[1] Natl Univ Ireland Univ Coll Dublin, Coll Engn Math & Phys Sci, UCD Commun & Optoelect Res Ctr, Dublin 4, Ireland
[2] Natl Univ Ireland Univ Coll Dublin, Coll Engn Math & Phys Sci, Sch Elect Elect & Mech Engn, Dublin 4, Ireland
[3] Natl Univ Ireland Univ Coll Dublin, Complex Adapt Syst Lab, Dublin 4, Ireland
基金
爱尔兰科学基金会;
关键词
WIGNER DISTRIBUTION FUNCTION; FRACTIONAL FOURIER; DIGITAL COMPUTATION; FRESNEL; METROLOGY; ALGORITHM; SIGNALS;
D O I
10.1364/JOSAA.27.000021
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The linear canonical transform provides a mathematical model of paraxial propagation though quadratic phase systems. We review the literature on numerical approximation of this transform, including discretization, sampling, and fast algorithms, and identify key results. We then propose a frequency-division fast linear canonical transform algorithm comparable to the Sande-Tukey fast Fourier transform. Results calculated with an implementation of this algorithm are presented and compared with the corresponding analytic functions. (C) 2010 Optical Society of America
引用
收藏
页码:21 / 30
页数:10
相关论文
共 54 条
[1]   GENERALIZATION OF THE FRACTIONAL FOURIER TRANSFORMATION TO AN ARBITRARY LINEAR LOSSLESS TRANSFORMATION - AN OPERATOR APPROACH [J].
ABE, S ;
SHERIDAN, JT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (12) :4179-4187
[2]   OPTICAL OPERATIONS ON WAVE-FUNCTIONS AS THE ABELIAN SUBGROUPS OF THE SPECIAL AFFINE FOURIER TRANSFORMATION [J].
ABE, S ;
SHERIDAN, JT .
OPTICS LETTERS, 1994, 19 (22) :1801-1803
[3]   Properties of the linear canonical integral transformation [J].
Alieva, Tatiana ;
Bastiaans, Martin J. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (11) :3658-3665
[4]  
[Anonymous], 2000, The mathematica book
[5]  
[Anonymous], 2008, Introduction to Fourier optics
[6]  
[Anonymous], THESIS NATL TAIWAN U
[7]   Fast and accurate Polar Fourier transform [J].
Averbuch, A. ;
Coifman, R. R. ;
Donoho, D. L. ;
Elad, M. ;
Israeli, M. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (02) :145-167
[8]   Optimal filtering with linear canonical transformations [J].
Barshan, B ;
Kutay, MA ;
Ozaktas, HM .
OPTICS COMMUNICATIONS, 1997, 135 (1-3) :32-36
[9]   WIGNER DISTRIBUTION FUNCTION AND ITS OPTICAL PRODUCTION [J].
BARTELT, HO ;
BRENNER, KH ;
LOHMANN, AW .
OPTICS COMMUNICATIONS, 1980, 32 (01) :32-38
[10]   Phase reconstruction from intensity measurements in one-parameter canonical-transform systems [J].
Bastiaans, MJ ;
Wolf, KB .
SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, :589-592