GIP mediates the incretin effect and glucose tolerance by dual actions on α cells and β cells

被引:92
作者
El, K. [1 ]
Gray, S. M. [1 ]
Capozzi, M. E. [1 ]
Knuth, E. R. [2 ]
Jin, E. [2 ]
Svendsen, B. [1 ]
Clifford, A. [1 ]
Brown, J. L. [1 ]
Encisco, S. E. [1 ]
Chazotte, B. M. [1 ]
Sloop, K. W. [3 ]
Nunez, D. J. [1 ]
Merrins, M. J. [2 ]
D'Alessio, D. A. [1 ,4 ]
Campbell, J. E. [1 ,4 ,5 ]
机构
[1] Duke Univ, Duke Mol Physiol Inst, Durham, NC 27708 USA
[2] Univ Wisconsin, Dept Med, Div Endocrinol Diabet & Metab, Madison, WI USA
[3] Eli Lilly & Co, Lilly Res Labs, Diabet & Complicat, Indianapolis, IN 46285 USA
[4] Duke Univ, Dept Med, Div Endocrinol, Durham, NC 27708 USA
[5] Duke Univ, Dept Pharmacol & Canc Biol, Durham, NC 27708 USA
基金
美国国家卫生研究院;
关键词
GASTRIC-INHIBITORY POLYPEPTIDE; DEPENDENT INSULINOTROPIC POLYPEPTIDE; GLUCAGON-SECRETION; RECEPTOR; HORMONE; ANTAGONIST; GLP-1; AMIDE;
D O I
10.1126/sciadv.abf1948
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glucose-dependent insulinotropic polypeptide (GIP) communicates nutrient intake from the gut to islets, enabling optimal levels of insulin secretion via the GIP receptor (GIPR) on beta cells. The GIPR is also expressed in a cells, and GIP stimulates glucagon secretion; however, the role of this action in the postprandial state is unknown. Here, we demonstrate that GIP potentiates amino acid-stimulated glucagon secretion, documenting a similar nutrient-dependent action to that described in beta cells. Moreover, we demonstrate that GIP activity in a cells contributes to insulin secretion by invoking paracrine alpha to beta cell communication. Last, specific loss of GIPR activity in alpha cells prevents glucagon secretion in response to a meal stimulus, limiting insulin secretion and driving glucose intolerance. Together, these data uncover an important axis by which GIPR activity in a cells is necessary to coordinate the optimal level of both glucagon and insulin secretion to maintain postprandial homeostasis.
引用
收藏
页数:10
相关论文
共 38 条
[11]   Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation [J].
Dean, E. Danielle ;
Li, Mingyu ;
Prasad, Nripesh ;
Wisniewski, Scott N. ;
Von Deylen, Alison ;
Spaeth, Jason ;
Maddison, Lisette ;
Botros, Anthony ;
Sedgeman, Leslie R. ;
Bozadjieva, Nadejda ;
Ilkayeva, Olga ;
Coldren, Anastasia ;
Poffenberger, Greg ;
Shostak, Alena ;
Semich, Michael C. ;
Aamodt, Kristie I. ;
Phillips, Neil ;
Yan, Hai ;
Bernal-Mizrachi, Ernesto ;
Corbin, Jackie D. ;
Vickers, Kasey C. ;
Levy, Shawn E. ;
Dai, Chunhua ;
Newgard, Christopher ;
Gu, Wei ;
Stein, Roland ;
Chen, Wenbiao ;
Powers, Alvin C. .
CELL METABOLISM, 2017, 25 (06) :1362-+
[12]   Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets [J].
DiGruccio, Michael R. ;
Mawla, Alex M. ;
Donaldson, Cynthia J. ;
Noguchi, Glyn M. ;
Vaughan, Joan ;
Cowing-Zitron, Christopher ;
van der Meulen, Talitha ;
Huising, Mark O. .
MOLECULAR METABOLISM, 2016, 5 (07) :449-458
[13]   Advances in oral peptide therapeutics [J].
Drucker, Daniel J. .
NATURE REVIEWS DRUG DISCOVERY, 2020, 19 (04) :277-289
[14]   Repositioning the Alpha Cell in Postprandial Metabolism [J].
El, Kimberley ;
Capozzi, Megan E. ;
Campbell, Jonathan E. .
ENDOCRINOLOGY, 2020, 161 (11)
[15]   The role of GIP in α-cells and glucagon secretion [J].
El, Kimberley ;
Campbell, Jonathan E. .
PEPTIDES, 2020, 125
[16]   Alanine, arginine, cysteine, and proline, but not glutamine, are substrates for, and acute mediators of, the liver-α-cell axis in female mice [J].
Galsgaard, Katrine D. ;
Jepsen, Sara L. ;
Kjeldsen, Sasha A. S. ;
Pedersen, Jens ;
Albrechtsen, Nicolai J. Wewer ;
Holst, Jens J. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2020, 318 (06) :E920-E929
[17]   Separate and Combined Glucometabolic Effects of Endogenous Glucose-Dependent Insulinotropic Polypeptide and Glucagon-like Peptide 1 in Healthy Individuals [J].
Gasbjerg, Laerke S. ;
Helsted, Mads M. ;
Hartmann, Bolette ;
Jensen, Mette H. ;
Gabe, Maria B. N. ;
Sparre-Ulrich, Alexander H. ;
Veedfald, Simon ;
Stensen, Signe ;
Lanng, Amalie R. ;
Bergmann, Natasha C. ;
Christensen, Mikkel B. ;
Vilsboll, Tina ;
Holst, Jens J. ;
Rosenkilde, Mette M. ;
Knop, Filip K. .
DIABETES, 2019, 68 (05) :906-917
[18]   Discordance between GLP-1R gene and protein expression in mouse pancreatic islet cells [J].
Gray, Sarah M. ;
Xin, Yurong ;
Ross, Elizabeth C. ;
Chazotte, Bryanna M. ;
Capozzi, Megan E. ;
El, Kimberley ;
Svendsen, Berit ;
Ravn, Peter ;
Sloop, Kyle W. ;
Tong, Jenny ;
Gromada, Jesper ;
Campbell, Jonathan E. ;
D'Alessio, David A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (33) :11529-11541
[19]   The incretin system in healthy humans: The role of GIP and GLP-1 [J].
Hoist, Jens Juul .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2019, 96 :46-55
[20]   Liver-Specific Disruption of the Murine Glucagon Receptor Produces α-Cell Hyperplasia Evidence for a Circulating α-Cell Growth Factor [J].
Longuet, Christine ;
Robledo, Ana M. ;
Dean, E. Danielle ;
Dai, Chunhua ;
Ali, Safina ;
McGuinness, Ian ;
de Chavez, Vincent ;
Vuguin, Patricia M. ;
Charron, Maureen J. ;
Powers, Alvin C. ;
Drucker, Daniel J. .
DIABETES, 2013, 62 (04) :1196-1205